Session Description Protocol (SDP) Version 2.0 Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation ("this documentation") for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
- **Copyrights.** This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
- **No Trade Secrets.** Microsoft does not claim any trade secret rights in this documentation.
- **Patents.** Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- **License Programs.** To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
- **Trademarks.** The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- **Fictitious Names.** The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision History</th>
<th>Revision Class</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/4/2008</td>
<td>0.1</td>
<td>New</td>
<td>Initial version</td>
</tr>
<tr>
<td>4/25/2008</td>
<td>0.2</td>
<td>Minor</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>6/27/2008</td>
<td>1.0</td>
<td>Major</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>8/15/2008</td>
<td>1.01</td>
<td>Minor</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>12/12/2008</td>
<td>2.0</td>
<td>Major</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>2/13/2009</td>
<td>2.01</td>
<td>Minor</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>3/13/2009</td>
<td>2.02</td>
<td>Minor</td>
<td>Revised and edited technical content</td>
</tr>
<tr>
<td>7/13/2009</td>
<td>2.03</td>
<td>Major</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>8/28/2009</td>
<td>2.04</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>11/6/2009</td>
<td>2.05</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>2/19/2010</td>
<td>2.06</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>3/31/2010</td>
<td>2.07</td>
<td>Major</td>
<td>Updated and revised the technical content</td>
</tr>
<tr>
<td>4/30/2010</td>
<td>2.08</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/7/2010</td>
<td>2.09</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/29/2010</td>
<td>2.10</td>
<td>Editorial</td>
<td>Changed language and formatting in the technical content.</td>
</tr>
<tr>
<td>7/23/2010</td>
<td>2.10</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/27/2010</td>
<td>3.0</td>
<td>Major</td>
<td>Significantly changed the technical content</td>
</tr>
<tr>
<td>11/15/2010</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>12/17/2010</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>6/10/2011</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>1/20/2012</td>
<td>4.0</td>
<td>Major</td>
<td>Significantly changed the technical content</td>
</tr>
<tr>
<td>4/11/2012</td>
<td>4.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/16/2012</td>
<td>4.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/8/2012</td>
<td>5.0</td>
<td>Major</td>
<td>Significantly changed the technical content</td>
</tr>
<tr>
<td>2/11/2013</td>
<td>5.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>7/30/2013</td>
<td>5.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>Date</td>
<td>Revision History</td>
<td>Revision Class</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>11/18/2013</td>
<td>5.2</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>2/10/2014</td>
<td>5.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>4/30/2014</td>
<td>5.3</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>7/31/2014</td>
<td>5.4</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>10/30/2014</td>
<td>5.5</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>3/30/2015</td>
<td>6.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>9/4/2015</td>
<td>7.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>8/1/2016</td>
<td>8.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>9/14/2016</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/19/2017</td>
<td>8.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>12/12/2017</td>
<td>8.2</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>4/27/2018</td>
<td>9.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>7/24/2018</td>
<td>10.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>8/28/2018</td>
<td>11.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>12/11/2018</td>
<td>11.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>6/18/2019</td>
<td>11.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction ... 8
 1.1 Glossary ... 8
 1.2 References .. 11
 1.2.1 Normative References .. 11
 1.2.2 Informative References ... 13
 1.3 Overview .. 13
 1.4 Relationship to Other Protocols ... 15
 1.5 Prerequisites/Preconditions .. 16
 1.6 Applicability Statement .. 16
 1.7 Versioning and Capability Negotiation 16
 1.8 Vendor-Extensible Fields .. 16
 1.9 Standards Assignments .. 17

2 Messages.. 18
 2.1 Transport .. 18
 2.2 Message Syntax ... 18

3 Protocol Details ... 19
 3.1 Details .. 19
 3.1.1 Abstract Data Model ... 19
 3.1.2 Timers .. 19
 3.1.3 Initialization .. 19
 3.1.4 Higher-Layer Triggered Events .. 19
 3.1.5 Message Processing Events and Sequencing Rules 19
 3.1.5.1 Supported Values and Parameters for the a=crypto Attribute .. 19
 3.1.5.2 Specifying and Negotiating SSRTP ... 20
 3.1.5.2.1 Processing and Negotiating SSRTP ... 21
 3.1.5.2.2 Renegotiation of Encryption ... 22
 3.1.5.3 Representing new Payload Types .. 22
 3.1.5.4 Interpreting the Preference of Formats in the Format List 25
 3.1.5.5 Format for Dual-Tone Multi-Frequency (DTMF) in SDP 25
 3.1.5.6 Restriction on the Name of the RTP Payload for Redundant Audio Data 25
 3.1.5.7 Restriction on the Name and sampling rate for comfort noise 25
 3.1.5.8 Negotiating SRTP or SSRTP Optionally .. 25
 3.1.5.9 Connection-Oriented Media Address Support ... 26
 3.1.5.10 Limited support for setup and connection Attributes .. 27
 3.1.5.10.1 Limited support for the a=setup Attribute ... 27
 3.1.5.10.2 Limited support for the a=connection Attribute .. 27
 3.1.5.11 Text Telephony Support .. 28
 3.1.5.12 Early Media Support ... 28
 3.1.5.12.1 Restriction to Receiving an SDP Answer in Provisional Response 28
 3.1.5.12.2 Receiving an SDP Answer in Provisional Response and Starting Media Streams .. 28
 3.1.5.12.3 SDP Answer in Provisional and Final Responses 29
 3.1.5.12.4 ICE Processing When an SDP Answer is Received in the Provisional Response .. 29
 3.1.5.13 Extensions for reliable provisional response processing and related offer/answer models .. 29
 3.1.5.14 No Support for Renegotiation of SRTP or SSRTP Encryption Parameters 30
 3.1.5.15 Labeling a Media Description with an a=label Attribute 30
 3.1.5.16 Address types in the c= line .. 30
 3.1.5.17 No Support for Optional Parameters in the a=rtcp Attribute 31
 3.1.5.18 Application sharing media stream/type m=applicationsharing 31
 3.1.5.18.1 a=x-applicationsharing-session-id attribute ... 31
 3.1.5.18.2 a=x-applicationsharing-role attribute ... 31
3.1.5.18.3 a=x-applicationsharing-media-type attribute 32
3.1.5.18.4 a=mid attribute .. 32
3.1.5.18.5 a=applicationsharing-contentflow attribute 32
3.1.5.19 Interpretation of o= line in the SDP 33
3.1.5.20 Deviations from ICE-06 ... 33
3.1.5.20.1 General Outline of the ICE Methodology 33
3.1.5.20.2 ICE RE-INVITE Initiator ... 33
3.1.5.20.3 No Update of Candidates Between INVITE and ICE RE-INVITE 34
3.1.5.20.4 Extending the Transport to Connection-Oriented (TCP) 34
3.1.5.20.5 No IPv6 transport addresses ... 34
3.1.5.21 Deviation from ICE V19 ... 34
3.1.5.21.1 Support for IPv6 transport addresses 34
3.1.5.21.1.1 a=x-candidate-ipv6 attribute 35
3.1.5.21.2 LITE implementation ... 35
3.1.5.21.3 Ice-options attributes .. 35
3.1.5.21.4 Ice-mismatch attributes ... 35
3.1.5.21.5 ice-ufrag and ice-pwd attributes 35
3.1.5.22 Deviation from ICE-TCP-07 ... 36
3.1.5.22.1 Default Candidate .. 36
3.1.5.22.2 Local Candidate ... 36
3.1.5.23 Extensions for call hold and retrieve 36
3.1.5.23.1 Invoking hold ... 36
3.1.5.23.2 Clearing hold (retrieve) ... 36
3.1.5.24 Extension for video receive capabilities a=x-caps 36
3.1.5.25 Extensions to optimize the media path to a gateway 38
3.1.5.25.1 a=x-bypassid attribute ... 38
3.1.5.25.2 a=x-bypass attribute ... 38
3.1.5.25.3 a=x-mediasections attribute 38
3.1.5.26 Extensions for diagnostic info in SDP messages 39
3.1.5.27 Extensions for Music-on-Hold ... 40
3.1.5.27.1 a=feature attribute .. 40
3.1.5.27.2 User agent behavior for a=feature attribute 40
3.1.5.28 Extensions for media bandwidth 41
3.1.5.28.1 a=x-mediatbw attribute .. 41
3.1.5.28.2 User agent behavior for a=x-mediatbw attribute 42
3.1.5.29 Extensions for declaring device capabilities 42
3.1.5.29.1 a=x-devicecaps attribute .. 42
3.1.5.29.2 User agent behavior for a=x-devicecaps attribute 43
3.1.5.30 Extensions for RTCP-based feedback messages 43
3.1.5.30.1 a=rtcp-rsize attribute ... 43
3.1.5.30.2 a=rtcp-fb attribute ... 43
3.1.5.30.3 User agent behavior for a=rtcp-rsize and a=rtcp-fb attributes 44
3.1.5.31 Extensions for Synchronization Source (SSRC) range allocation 45
3.1.5.31.1 a=x-ssrc-range attribute 45
3.1.5.31.2 User agent behavior for a=x-ssrc-range attribute 45
3.1.5.32 Extensions for Media Source ID (MSI) assignment 46
3.1.5.32.1 a=x-source-streamid attribute 46
3.1.5.32.2 User agent behavior for a=x-source-streamid attribute 46
3.1.5.33 Extensions for media source labeling 47
3.1.5.33.1 a=x-source attribute ... 47
3.1.5.33.2 User agent behavior of a=x-source attribute 47
3.1.5.34 Extensions for multiplexed media channels 47
3.1.5.34.1 Indicating multiplexed media channels in an SDP message 47
3.1.5.34.2 User agent behavior for negotiating multiplexed media channels 48
3.1.5.35 Extensions for multi-channel main-video modality negotiation .. 48
3.1.5.35.1 Requirements to negotiate a multi-channel main-video modality 49
3.1.5.36 Extensions for transport address or ICE candidate attributes 49
3.1.5.36.1 a=x-candidate-info attribute 49
4 Protocol Examples ..52
 4.1 Generic Examples ...52
 4.1.1 Client Makes an Offer using ICE as described in IETF-DRAFT-ICENAT-06........52
 4.1.2 Client Receives Response with SSRTP to ICENAT-06 Offer53
 4.1.3 Client Makes an Offer using ICE as described in IETF-DRAFT-ICENAT-19.......54
 4.1.4 Client Receives Response with SSRTP to ICENAT-19 Offer56
 4.2 Encryption Using SRTP Examples that Demonstrate Extensions57
 4.3 Offer/Answer Exchange for Various SRTP Encryption Scenarios58
 4.3.1 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer With SRTP or Client Scale-SRTP Encryption Optionally ..58
 4.3.1.1 Offer ...58
 4.3.1.2 Answer ..58
 4.3.1.3 Noteworthy points ...58
 4.3.2 Offerer With SRTP or Client Scale-SRTP Optionally and Answerer With SRTP or Server SSRTP Encryption Optionally ...58
 4.3.2.1 Offer ...58
 4.3.2.2 Answer ..59
 4.3.2.3 Noteworthy points ...59
 4.3.3 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer With SRTP Encryption Optionally ...59
 4.3.3.1 Offer ...59
 4.3.3.2 Answer ..59
 4.3.3.3 Noteworthy points ...60
 4.3.4 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer Cannot Support SRTP or SSRTP Encryption ...60
 4.3.4.1 Offer ...60
 4.3.4.2 Answer ..60
 4.3.4.3 Noteworthy points: ...60
 4.3.5 Offerer With SRTP or Client Scale-SRTP Encryption Compulsorily and Answerer With SRTP Encryption Optionally ...60
 4.3.5.1 Offer ...60
 4.3.5.2 Answer ..61
 4.3.5.3 Noteworthy points ...61
 4.4 Restriction to the name and sampling rate for wide band comfort noise61
 4.5 Offer/Answer Exchange for application sharing ...61
 4.5.1 Offer ...61
 4.5.2 Answer ...62
 4.5.3 Noteworthy points ...62
 4.6 Offer/Answer Exchange with optimized media path to a gateway63
 4.6.1 Incoming call from gateway to client ...63
 4.6.2 Outbound call from client to gateway ...65
 4.7 Extensions for music-on-hold ...67
 4.7.1 Offer specifying music-on-hold ...67
 4.7.2 Offer removing music-on-hold ...67
 4.8 Offer/Answer Exchange for multi-channel main-video modality67
 4.8.1 Offer from client ...67
 4.8.2 Answer from MCU ...71
5 Security ...74
 5.1 Security Considerations for Implementers ..74
 5.2 Index of Security Parameters ..74
Appendix A: Product Behavior ... 75
Change Tracking .. 80
Index .. 81
1 Introduction

The Session Description Protocol (SDP) Version 2.0 Extensions protocol specifies a proprietary extension to the Session Description Protocol (SDP) to support audio/video and application sharing calls.

SDP is used to negotiate and establish session characteristics during call setup. Unless explicitly specified, this protocol follows the offer/answer model to represent session characteristics using an SDP to establish a session.

This protocol is used to negotiate audio/video and application sharing call setup and adding video (or audio) to an existing audio (or video) only call.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.

1.1 Glossary

This document uses the following terms:

200 OK: A response to indicate that the request has succeeded.

Audio video profile (AVP): A Real-Time Transport Protocol (RTP) profile that is used specifically with audio and video, as described in [RFC3551]. It provides interpretations of generic fields that are suitable for audio and video media sessions.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF), commonly used by Internet specifications. ABNF notation balances compactness and simplicity with reasonable representational power. ABNF differs from standard BNF in its definitions and uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more information, see [RFC5234].

Base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is converted to a sequence of printable ASCII characters, as described in [RFC4648].

Client Scale Secure Real-Time Transport Protocol (Client Scale-SRTP): A protocol that is used by applications that receive media from and send media to only one peer. It is a variation of the Scale Secure Real-Time Transport Protocol (SSRTP), as described in [MS-SSRTP].

Common Intermediate Format (CIF): A picture format, described in the H.263 standard, that is used to specify the horizontal and vertical resolutions of pixels in YCbCr sequences in video signals.

Conference: A Real-Time Transport Protocol (RTP) session that includes more than one participant.

Content-Type header: A message header field whose value describes the type of data that is in the body of the message.

Contributing source (CSRC): A source of a stream of RTP packets that has contributed to the combined stream produced by an RTP mixer. The mixer inserts a list of the synchronization source (SSRC) identifiers of the sources that contributed to the generation of a particular packet into the RTP header of that packet. This list is called the CSRC list. An example application is audio conferencing where a mixer indicates all the talkers whose speech was combined to produce the outgoing packet, allowing the receiver to indicate the current talker, even though all the audio packets contain the same SSRC identifier (that of the mixer). See [RFC3550] section 3.
dialog: A peer-to-peer Session Initiation Protocol (SIP) relationship that exists between two user agents and persists for a period of time. A dialog is established by SIP messages, such as a 2xx response to an INVITE request, and is identified by a call identifier, a local tag, and a remote tag.

dual-tone multi-frequency (DTMF): In telephony systems, a signaling system in which each digit is associated with two specific frequencies. This system typically is associated with touch-tone keypads for telephones.

endpoint: A device that is connected to a computer network.

forward error correction (FEC): A process in which a sender uses redundancy to enable a receiver to recover from packet loss.

Host Candidate: A candidate that is obtained by binding to ports on the local interfaces of the host computer. The local interfaces include both physical interfaces and logical interfaces such as Virtual Private Networks (VPNs).

Interactive Connectivity Establishment (ICE): A methodology that was established by the Internet Engineering Task Force (IETF) to facilitate the traversal of network address translation (NAT) by media.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to address growth on the Internet. Improvements include a 128-bit IP address size, expanded routing capabilities, and support for authentication and privacy.

INVITE: A Session Initiation Protocol (SIP) method that is used to invite a user or a service to participate in a session.

Media Source ID (MSI): A 32-bit identifier that uniquely identifies an audio or video source in a conference.

ms-diagnostics-public header: A header that is added to a Session Initiation Protocol (SIP) response, BYE request, or CANCEL request to convey troubleshooting information. Unlike the ms-diagnostics header, the ms-diagnostics-public header does not contain a "source" parameter.

multiple points of presence (MPOP): A condition in which a single user signs in from multiple devices. A user who has multiple points of presence can be contacted through any of these devices.

Multipoint Control Unit (MCU): A server endpoint that offers mixing services for multiparty, multiuser conferencing. An MCU typically supports one or more media types, such as audio, video, and data.

Multipurpose Internet Mail Extensions (MIME): A set of extensions that redefines and expands support for various types of content in email messages, as described in [RFC2045], [RFC2046], and [RFC2047].

network address translation (NAT): The process of converting between IP addresses used within an intranet, or other private network, and Internet IP addresses.

participant: A user who is participating in a conference or peer-to-peer call, or the object that is used to represent that user.

Real-Time Transport Control Protocol (RTCP): A network transport protocol that enables monitoring of Real-Time Transport Protocol (RTP) data delivery and provides minimal control and identification functionality, as described in [RFC3550].
Real-Time Transport Protocol (RTP): A network transport protocol that provides end-to-end transport functions that are suitable for applications that transmit real-time data, such as audio and video, as described in [RFC3550].

Relayed Candidate: A candidate that is allocated on the Traversal Using Relay NAT (TURN) server by sending an Allocate Request to the TURN server.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and server settings and also enables negotiation of common settings to use for the duration of the connection, so that input, graphics, and other data can be exchanged and processed between client and server.

Scale Secure Real-Time Transport Protocol (SSRTP): A Microsoft proprietary extension to the Secure Real-Time Transport Protocol (SRTP), as described in [RFC3711].

SDP answer: A Session Description Protocol (SDP) message that is sent by an answerer in response to an offer that is received from an offerer.

SDP offer: A Session Description Protocol (SDP) message that is sent by an offerer.

secure audio video profile (SAVP): A protocol that extends the audio-video profile specification to include the Secure Real-Time Transport Protocol, as described in [RFC3711].

Secure Real-Time Transport Protocol (SRTP): A profile of Real-Time Transport Protocol (RTP) that provides encryption, message authentication, and replay protection to the RTP data, as described in [RFC3711].

server: A replicating machine that sends replicated files to a partner (client). The term "server" refers to the machine acting in response to requests from partners that want to receive replicated files.

Server Reflexive Candidate: A candidate whose transport addresses is a network address translation (NAT) binding that is allocated on a NAT when an endpoint sends a packet through the NAT to the server. A Server Reflexive Candidate can be discovered by sending an allocate request to the TURN server or by sending a binding request to a Simple Traversal of UDP through NAT (STUN) server.

Server Scale Secure Real-Time Transport Protocol (Server SSRTP): A derivative of the Scale Secure Real-Time Transport Protocol (SSRTP) that is used by applications to receive media from multiple senders and fan-out media to multiple receivers. Typically, applications such as Multipoint Control Units (MCUs) use this mode of encryption.

session: A collection of multimedia senders and receivers and the data streams that flow between them. A multimedia conference is an example of a multimedia session.

Session Description Protocol (SDP): A protocol that is used for session announcement, session invitation, and other forms of multimedia session initiation. For more information see [MS-SDP] and [RFC3264].

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

SIP protocol client: A network client that sends Session Initiation Protocol (SIP) requests and receives SIP responses. An SIP client does not necessarily interact directly with a human user. User agent clients (UACs) and proxies are SIP clients.

SIP request: A Session Initiation Protocol (SIP) message that is sent from a user agent client (UAC) to a user agent server (UAS) to call a specific operation.
SIP response: A Session Initiation Protocol (SIP) message that is sent from a user agent server (UAS) to a user agent client (UAC) to indicate the status of a request from the UAC to the UAS.

stream: A flow of data from one host to another host, or the data that flows between two hosts.

Synchronization Source (SSRC): A 32-bit identifier that uniquely identifies a media *stream* in a Real-Time Transport Protocol (RTP) session. An SSRC value is part of an RTP packet header, as described in [RFC3550].

telecommunications device for the deaf (TDD): A device that enables the transmission of typed messages over phone lines. These devices typically include keyboards for typing messages to send and printers to receive messages from one device to another.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send data in the form of message units between computers over the Internet. TCP handles keeping track of the individual units of data (called packets) that a message is divided into for efficient routing through the Internet.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of messages in client and server applications communicating over open networks. TLS supports server and, optionally, client authentication by using X.509 certificates (as specified in [X509]). TLS is standardized in the IETF TLS working group.

UPDATE: The set of metadata pertaining to a file or file deletion. The main fields in an update consist of the unique identifier (UID), global version sequence number (GVSN), file name, file attributes, and flags indicating whether the update is for an existing file, or for a file deletion.

user agent: An HTTP user agent, as specified in [RFC2616].

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to the transport layer in the ISO/OSI reference model.

Video-based Screen Sharing: A protocol that uses video modality to share the client’s screen with another client directly or via an multipoint control unit (MCU).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the [Errata].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.

1.3 Overview

Initiation of a multimedia session or conference requires the exchange of the media details, transport addresses, and other metadata between the parties involved. This exchange facilitates the negotiation of media characteristics for establishing the session. The media characteristics associated with a session are specified in Session Description Protocol (SDP). The exchange and negotiation of the session properties follows the specification of the offer/answer model with the SDP. In applications, these protocols are used to negotiate and establish a multimedia session.

It is a common requirement that the media being exchanged in a multimedia session be protected using some form of encryption. When the Real-Time Transport Protocol (RTP) is used to exchange media, the media can be protected using the Secure Real-Time Transport Protocol (SRTP), which requires exchange of attributes related to SRTP, such as cryptographic parameters. These characteristics can also be negotiated using SDP when the cryptographic characteristics of the media stream are described by a new SDP attribute name crypto, as described in [RFC4568].

After the session is established, media can flow between the participating parties. Often, other networking components, such as network address translation (NAT), are present between two parties and prevent media from traversing between the two parties. In such cases, Interactive Connectivity Establishment (ICE) can be used to facilitate media traversal through these network components. For information about the proprietary extension to the ICE protocol see [MS-ICE]. ICE specifies a protocol for setting up the audio/video RTP streams in a way that allows the streams to perform NAT.

This protocol uses and extends these protocols to support multimedia sessions. This protocol extension consists of the following additions, enhancements, and restrictions:

- Specifies the parameter and values that are supported for the attribute a=crypto, as specified in the security description for media streams.
SRTP and **Scale Secure Real-Time Transport Protocol (SSRTP)** encryption parameters are not renegotiated once the session is established.

An SDP attribute named `a=cryptoscale` is used for the negotiation of all the cryptographic parameters associated with SSRTP.

The RTAudio, G722-Stereo, SILK, RTVideo and H.264UC codecs, in addition to RTData, are supported.

A media format for video **forward error correction (FEC), ULPFEC-UC**.

SRTP encryption can be used optionally. This option allows for support of remote peers that do not support Secure-RTP.

Transmission Control Protocol (TCP) media addresses in SDP are not used when ICE is not used. This is a deviation from the specification of TCP-based media transport in the SDP.

TCP media addresses in SDP are not used in the first **Session Initiation Protocol (SIP) INVITE** method when ICE is used.

Addresses are not used for the `rtcp` attribute.

Limited support for the `setup` attribute. This is a deviation from the TCP-based media transport in the SDP.

Limited support for the `connection` attribute. This is a deviation from the TCP-based media transport in the SDP.

This protocol handles early media only in very specific scenarios in a constrained manner and does not support early media in any other scenarios. Section 3 has more details on these scenarios and constraints.

Special handling of **Internet Protocol version 6 (IPv6)** addresses in SDP.

Several deviations from the ICE specifications.

The session version on the `o=` line is not incremented.

The format for **dual-tone multi-frequency (DTMF)** in SDP.

A restriction on the name of the RTP payload for redundant audio data.

A restriction on the name and sampling rate for comfort noise.

A media type `m=applicationsharing`, which identifies an **Remote Desktop Protocol (RDP)** based application sharing media stream, or session, over RTP. In the context of the application sharing media stream, `m=applicationsharing`, five new attributes are defined:

- `a=x-applicationsharing-session-id`: Identifies an RDP session.
- `a=x-applicationsharing-role`: Determines the party sharing role.
- `a=x-applicationsharing-media-type` ("sharer" or "viewer"): Negotiates the RDP media type.
- `a=mid`: An identifier of the media described by the containing `m=` line.
- `a=x-applicationsharing-contentflow`: Determines the direction of flow of RDP content.

A media level attribute `a=ttty`, which indicates that a **user agent** has been configured to optimize the transfer of tones used in text telephony.
A video media level attribute `a=x-caps`, which indicates the video capabilities supported by a video receiver.

A **Multipurpose Internet Mail Extensions (MIME)** type `application/GW-SDP` is defined. This MIME type holds the gateway SDP or SIP trunk SDP.

A media level attribute `a=x-bypassid`, which is a declarative attribute used to indicate the location of the media endpoint or media processor associated with this SDP. It is used to optimize the media path with a gateway in the same location.

A media level attribute `a=x-bypass`, which is a declarative attribute that signifies that the media line with which it is associated involves bypass. It is a media level attribute sent in an answer when the answerer has chosen the bypass path.

A media level attribute `a=x-mediawebset`, which contains the stream capabilities of the sender.

A media level attribute `a=x-ms-SDP-diagnostics`, which is used to notify recipient of additional diagnostic information for that media line.

A media level attribute `a=feature:MoH`, associated with an `m=audio` media type, which is a declarative attribute to indicate the media channel is streaming music-on-hold media.

A session level attribute `a=x-mediabw` to declare the maximum send and receive bandwidth available for a modality.

A session level attribute `a=x-devicecaps` to declare the device capabilities on an endpoint.

A media level attribute `a=rtcp-fb` to declare that certain RTCP-based feedback messages can be sent and received for the media stream.

A media level attribute `a=rtcp-rsize` to indicate that certain RTCP-based feedback messages are transmitted in a Reduced-Size format, as defined in [MS-RTP].

A media level attribute `a=x-ssrc-range` to declare the range used for Synchronization Source (SSRC) identifiers for the send stream.

A media level attribute `a=x-source-streamid` to declare a Media Source ID (MSI) for a media stream.

A media level attribute `a=x-source` to declare the name of a media source for a media description.

A media level attribute `a=x-sourceid` to declare that the modality of a media stream is panoramic-video.

A protocol to negotiate multiplexed media streams.

A protocol to negotiate a multi-channel main-video modality.

A media level attribute `a=x-candidate-info` to declare additional attributes associated with a transport address or ICE candidate.

A protocol to negotiate a video-based applicationsharing modality.

For details about these extensions and deviations, see section 3.

1.4 Relationship to Other Protocols

This protocol depends on:

- **SDP**, as described in [RFC4566], for media negotiation.
- **SIP**, as described in [RFC3261], for establishing and initializing a session.
- SDP for media streams, as described in [RFC4568], for media encryption.
- An offer/answer model for SDP, as described in [RFC3264], to represent session characteristics used with SDP.
- A methodology for NAT traversal for offer/answer protocols, as described in [IETF-DRAFT-ICENAT-06] and [IETF-DRAFT-ICENAT-19], for media to traverse NAT and firewalls.

1.5 Prerequisites/Preconditions

None.

1.6 Applicability Statement

This protocol is applicable to the following:

- The negotiation of SSRTP parameters between the two communicating peers. The SSRTP encryption can be used by an application in conference scenarios when communicating with a Multipoint Control Unit (MCU).
- The ability to negotiate whether the media is encrypted using SRTP/SSRTP. The ability to negotiate SRTP encryption or SSRTP encryption optionally enables the application to communicate using these encryption mechanisms when the remote peer cannot support either of these encryptions.
- The ability to support six new codecs.
- The ability to support a new video FEC payload format.
- The ability to do connection-oriented (TCP) media in selected scenarios.
- The ability to do early media in selected scenarios.
- The negotiation of video-receive capabilities between two video peers. The ability to negotiate video-receive capabilities enables a video source to know what a video receiver is capable of receiving, such as frame rate, resolution, bit rate, and the number of video streams.
- The ability to support RTCP-based feedback messages, transmitted in a Reduced-Size format.
- The ability to support negotiation of an SSRC range on a media stream.
- The ability to support negotiation of a set of multiplexed video channels.
- The ability to support negotiation of multiplexing RTP and RTCP packets for a media stream onto a single port.

1.7 Versioning and Capability Negotiation

No version number is defined in this protocol. Session characteristics are negotiated using SDP and the offer/answer model for SDP.

1.8 Vendor-Extensible Fields

None.
1.9 Standards Assignments

None.
2 Messages

2.1 Transport

As an extension to SDP, this protocol prescribes the format of session descriptions intended to support audio, video, and application sharing calls, and can use any transport protocol used to carry SDP messages.

SIP is a commonly used transport for SDP messages. In this case, session descriptions, represented as SDP messages, MUST be included in the body of SIP messages. The Content-Type header of such a SIP message MUST contain the type or sub-type "application/sdp" or "application/gw-sdp". For more information about the Content-Type header, see [RFC1521] section 4. The application/gw-sdp MIME type holds the gateway SDP or SIP trunk SDP and contains x-bypassid as a parameter. A client can use this parameter to decide if further parsing of the SDP is needed, thereby optimizing processing.

SIP messages can be transported over TCP or Transport Layer Security (TLS). TLS SHOULD be used to protect the encryption key, as the key is passed in the SIP/SDP signaling.

2.2 Message Syntax

The messages for this protocol are SDP messages. An SDP message contains the description of a media session. The session and media characteristics are described by a set of <type>=<value> lines, as specified in [RFC4566]. The extensions are defined as custom SDP attributes.

For additional syntax and protocol details, see section 3.1.5.
3 Protocol Details

3.1 Details

3.1.1 Abstract Data Model
None.

3.1.2 Timers
None.

3.1.3 Initialization
None.

3.1.4 Higher-Layer Triggered Events
None.

3.1.5 Message Processing Events and Sequencing Rules
All the message processing events and sequencing rules for media negotiation conform to the SDP specifications in [RFC4566] and [RFC3264], with some exceptions or modifications for the custom attributes introduced in this document.

Also note that the behavior described in [RFC4566] and [RFC3264] does not follow a simple client/server model. The two parties involved in an SDP exchange are peers. Which peer creates or modifies a session changes which peer is the offerer or answerer as specified in [RFC3264]. In addition, some SDP attributes follow an offer/answer behavior and some SDP attributes supply information to the other peer with no answer expected.

3.1.5.1 Supported Values and Parameters for the a=crypto Attribute
The a=crypto attribute is as specified in [RFC4568], with the exception that a single white space MUST be used. The attribute has the following format, expressed using Augmented Backus-Naur Form (ABNF) notation, as described in [RFC5234].

```
a=crypto tag WSP crypto-suite WSP key-params *(WSP session-param)
```

tag field: The tag field is used to specify a decimal number to identify a particular cryptographic attribute in the SDP security description for media streams, as specified in [RFC4568]. In the current extension, the semantics of the tag field is more restricted, in that the decimal value MUST be unique across the a=crypto and a=cryptoscale attributes. a=cryptoscale is a new attribute defined by this protocol and is specified in more detail in section 3.1.5.2.

crypto-suite field: The crypto-suite field is used to specify cryptographic methods or algorithms for media encryption. The only crypto-suite option supported is AES_CM_128_HMAC_SHA1_80. In other words, crypto-suite MUST be "AES_CM_128_HMAC_SHA1_80". In [RFC4568], this is defined in the context of "RTP/SAVP" as the transport. In the current extensions, use of this field is extended to the case when the transport is "RTP/AVP" in an SDP offer. This deviation from [RFC4568] is required to support negotiation of SRTP optionally, as specified in section 3.1.5.8.
Key-params field: The key-params field is used to specify the keying information. The key-params are further defined in [RFC4568], as follows:

 key-params = <key-method> "=" <key-info>

More than one key-params instance per line of a=crypto MUST NOT be used.

The key-method subfield is used to specify the provisional method of the keying information. As specified in [RFC4568], the only method that MUST be used is "inline", indicating that the keying material is provided in the key-info field.

The key-info field is specified in [RFC4568]. The specification of key-info in [RFC4568] is specifically targeted to the "RTP/SAVP" transport. In the current extension, the key-info field can be used for both "RTP/SAVP" and "RTP/AVP". This extension is required to support negotiation of SRTP optionally, as specified in section 3.1.5.8.

Following is the format specified in [RFC4568] for the key-info field.

 "inline:" <key||salt> ["|" lifetime] ["|" MKI "] length

Following is a list of constraints and values accepted for the key-info field:

- "MKI" SHOULD be used. If MKI is used, the MKI length MUST be 1 byte.
- The value for lifetime MUST be "2^31" in SDP offers and SDP answers sent.
- The value of lifetime MUST be ignored in SDP offers and SDP answers received, and "2^31" MUST be used instead.

Session-param field: The session-param field MUST NOT be used.

The following is an example a=crypto attribute:

 a=crypto:2 AES_CM_128_HMAC_SHA1_80
 inline:t20I47Tyj1NDG6H+gWNpIzAzRPfYeQg8pP+ukwoy|2^31|1:1

Horizontal tab (HTAB code as defined in ABNF) between tokens MUST NOT be used by the application.

3.1.5.2 Specifying and Negotiating SSRTP

The new a=cryptoscale attribute is introduced to support SSRTT encryption of the media in an audio/video session. This attribute has the following format expressed in ABNF notation, as described in [RFC5234]:

 "a=cryptoscale:" tag WSP scale-srtp-flavor WSP crypto-suite WSP key-params *(session-param)

The definition of tag, crypto-suite, key-params, and session-param are the same as that specified for the a=crypto attribute. All the extensions to or deviations from [RFC4568] related to the a=crypto attribute, as specified in section 3.1.5.1, also apply to the a=cryptoscale attribute.

Note that the tag field MUST be a unique decimal value across all the a=crypto and a=cryptoscale attributes.

The new field, scale-srtp-flavor, is specified as follows:
An application supporting media encryption using **Client Scale Secure Real-Time Transport Protocol (Client Scale-SRTP)** chooses a value of "client" for the `scale-srtp-flavor` field. An application supporting media encryption using **Server Scale Secure Real-Time Transport Protocol (Server SSRTP)** chooses a value of "server" for the `scale-srtp-flavor` field. An application MUST use either the Client Scale-SRTP encryption or the Server SSRTP encryption. It MUST NOT use both at the same time.

To negotiate SSRTP successfully, one peer MUST identify itself (via the `scale-srtp-flavor` field) to be the SSRTP "client", and the other MUST identify itself as the SSRTP "server". The SSRTP client supports Client Scale-SRTP encryption, and the SSRTP server supports Server SSRTP encryption. Which peer is the SSRTP server and which peer is the SSRTP client is independent of which peer sent the **SDP offer**. Typically, only a **MCU** would operate as an SSRTP server.

The SSRTP server encrypts media it sends to the SSRTP client using SSRTP encryption. SSRTP encryption is defined in [MS-SSRTP]. The SSRTP client decrypts SSRTP-encrypted media it receives from the SSRTP server.

The SSRTP client encrypts media it sends to the SSRTP server using **SRTP** encryption. SRTP encryption is defined in [MS-SRTP]. The SSRTP server decrypts SRTP-encrypted media it receives from the SSRTP client.

The fields of the attribute `a=crypto` and `a=cryptoscale` are themselves not encrypted. Protection of the fields and encryption information is provided by the **TLS** transport over which the **SIP** signaling is carried.

The following is an example `a=cryptoscale` attribute given by a peer which supports Client Scale-SRTP encryption:

```
  a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
  inline:85Sm2QWogZ9N256qTRhIIfxjUp9q1l5EwxbIiloc|2^31|1:1
```

3.1.5.2.1 Processing and Negotiating SSRTP

The `a=cryptoscale` attribute is used to negotiate **SSRTP** encryption of media.

The following table specifies how an application can communicate its **SRTP** and SSRTP encryption preferences.

<table>
<thead>
<tr>
<th>Protocol element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]</code></td>
<td>Supports SRTP encryption.</td>
</tr>
<tr>
<td><code>a=cryptoscale:<tag> client <crypto-suite> <key-params> [<session-params>]</code></td>
<td>Supports the client flavor of SSRTP encryption.</td>
</tr>
<tr>
<td><code>a=cryptoscale:<tag> server <crypto-suite> <key-params> [<session-params>]</code></td>
<td>Supports the server flavor of SSRTP encryption.</td>
</tr>
</tbody>
</table>

With the current extensions, an application expresses its ability to support SRTP and SSRTP by specifying the attributes `a=crypto` and `a=cryptoscale`, respectively, in an **SDP** message as the body of a **SIP request**.
An application MUST propose to support only one type of the SSRTP encryption, either "client" or "server", in the SDP message. The application MUST NOT add both client and server types of SSRTP to the SDP message.

An application which supports SSRTP encryption SHOULD also support SRTP encryption.

An application SHOULD respond to the SIP request with only one preferred encryption in the SDP message in the SIP response, out of all the proposed encryptions specified in the SDP message of the SIP request.

The following table summarizes all the possible combinations of successful SRTP or SSRTP negotiation. The behavior applies to both an initial SIP INVITE, as specified in [RFC3261], and a re-INVITE to add new modality.

<table>
<thead>
<tr>
<th>SDP offer contains</th>
<th>SDP answer contains</th>
<th>Result encryption from offerer to answerer</th>
<th>Result encryption from answerer to offerer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRTP</td>
<td>SRTP</td>
<td>SRTP encrypted</td>
<td>SRTP encrypted</td>
</tr>
<tr>
<td>Client SSRTP</td>
<td>Server SSRTP</td>
<td>SRTP encrypted</td>
<td>SSRTP encrypted</td>
</tr>
<tr>
<td>Server SSRTP</td>
<td>Client SSRTP</td>
<td>SSRTP encrypted</td>
<td>SRTP encrypted</td>
</tr>
<tr>
<td>SRTP and Client SSRTP</td>
<td>SRTP</td>
<td>SRTP encrypted</td>
<td>SRTP encrypted</td>
</tr>
<tr>
<td>SRTP and Server SSRTP</td>
<td>Server SSRTP</td>
<td>SRTP encrypted</td>
<td>SSRTP encrypted</td>
</tr>
<tr>
<td>SRTP and Server SSRTP</td>
<td>Client SSRTP</td>
<td>SSRTP encrypted</td>
<td>SRTP encrypted</td>
</tr>
</tbody>
</table>

If neither SSRTP nor SRTP encryption can be negotiated successfully for a modality, then either the media between the peers will be unencrypted or, if at least one peer requires the media to be encrypted, the offer/answer negotiation will either fail or the modality not be established.

An application can specify multiple \texttt{a=crypto} and \texttt{a=cryptoscale} attributes in an SDP offer, but there MUST NOT be \texttt{a=crypto} or \texttt{a=cryptoscale} attributes which have \texttt{key:params} fields which are identical except for their \texttt{<key||salt>} values. For example, in an SDP offer containing the following \texttt{a=crypto} attributes:

\begin{verbatim}
 a=crypto:2 AES_CM_128_HMAC_SHA1_80
 inline:t20I47Tyj1NDG6H+gWNP1zAzRFyEg8pP+ukwoy|2^31|1:1
 a=crypto:3 AES_CM_128_HMAC_SHA1_80
 inline:85Sm2QWogZ9N256qTRhfIRxjU9q1ISMXwbioc|2^31|1:1
\end{verbatim}

there is nothing distinguishing these attributes which would cause an answerer to prefer selecting one attribute over the other. In this example SDP offer, the \texttt{a=crypto:3} attribute is unnecessary.

3.1.5.2.2 Renegotiation of Encryption

An application MUST NOT use SIP re-INVITE to re-negotiate the encryption type, SRTP or SSRTP, or any other parameter in the \texttt{a=crypto} or \texttt{a=cryptoscale} lines.

3.1.5.3 Representing new Payload Types

This protocol adds support for eight new payload types:

- **RTAudio** for audio streams.
- **RED** for redundant audio streams.
- **G722-Stereo** for audio streams.
- **SILK** for audio streams.
- **RTVideo** for video streams.
- **H.264UC** for video streams.
- **RTData** for application sharing streams.
- **ULPFEC-UC** for video streams.

The media formats of these payload types are described by the parameters in the following table that SHOULD \(<\text{1}>\) be specified using the **a=rtpmap:** and **a=fmtp:** attributes for dynamic payload types, as specified in [RFC4566].

<table>
<thead>
<tr>
<th>Payload</th>
<th>Encoding name</th>
<th>Clock rate</th>
<th>Bit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTAudio</td>
<td>x-msrta</td>
<td>16000</td>
<td>29000</td>
</tr>
<tr>
<td>RTAudio</td>
<td>x-msrta</td>
<td>8000</td>
<td>11800</td>
</tr>
<tr>
<td>RED</td>
<td>RED</td>
<td>8000</td>
<td>Not Applicable: the a=fmtp: attribute SHOULD NOT be present in an SDP offer for RED.</td>
</tr>
<tr>
<td>RTVideo</td>
<td>x-rtvc1</td>
<td>90000</td>
<td>Not applicable: bitrate fmtp parameter is significant only for audio. bitrate SHOULD NOT be present in an SDP offer or SDP answer for RTVideo and MUST be ignored.</td>
</tr>
<tr>
<td>RTData</td>
<td>x-data</td>
<td>90000</td>
<td>Not applicable: bitrate fmtp parameter is significant only for audio. bitrate SHOULD NOT be present in an SDP offer or SDP answer for RTData and MUST be ignored.</td>
</tr>
</tbody>
</table>
| H.264UC\(<\text{2}>\) | X-H264UC | 90000 | **Not applicable:** bitrate **fmtp** parameter is significant only for audio. bitrate SHOULD NOT be present in an SDP offer or SDP answer for **H.264UC** and MUST be ignored.

However, the **a=fmtp:** attribute for **H.264UC** MUST specify two parameters: **packetization-mode=1** and **mst-mode=NI-TC.** These two parameters can appear in any order and are case-insensitive.

Also, an **a=x-ssrc-range** media-level attribute MUST be present. The length of the range given MUST be at least 30.
<table>
<thead>
<tr>
<th>Payload</th>
<th>Encoding name</th>
<th>Clock rate</th>
<th>Bit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>G722-Stereo<3></td>
<td>G722</td>
<td>8000/2</td>
<td>128000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The actual clock rate of the codec is 16000, but MUST be listed in SDP as 8000.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The "/2" is not part of the clock rate but indicates that the codec has 2 channels.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SILK<4>	SILK	16000	
Notes:			
The actual clock rate of the codec is 16000, but MUST be listed in SDP as 8000.			
The attribute SHOULD specify usedtx=0 and either useinbandfec=0 or useinbandfec=1 parameters.			

SILK	SILK	8000	
Notes:			
The attribute SHOULD specify usedtx=0 and either useinbandfec=0 or useinbandfec=1 parameters.			

ULPFEC-UC<5>	x-ulpfecuc	90000	
Notes:			
The bitrate fmtp parameter is significant only for audio. bitrate SHOULD NOT be present in an SDP offer or SDP answer for ULPFEC-UC and MUST be ignored.			

As an example, the following SDP message fragment shows the RTAudio payload type, SILK payload types and G722-Stereo payload type of an audio stream:

```
m=audio 37632 RTP/AVP 117 104 114 103 ...
...a=rtpmap:117 G722/8000/2
a=fmtp:117 bitrate=128000
...a=rtpmap:104 SILK/16000
a=fmtp:104 useinbandfec=1; usedtx=0
...a=rtpmap:114 x-msrta/16000
a=fmtp:114 bitrate=29000
...a=rtpmap:103 SILK/8000
a=fmtp:103 useinbandfec=1; usedtx=0
...```
Negotiation of these payload types are similar to the negotiation of other payload types, as specified in [RFC3264]. Any dynamic payload type can be chosen for these payloads following the RTP profile for audio and video conferences with minimum control specification in [RFC3551]. Specifying these parameters in the a=rtpmap: attribute in a media description section of an SDP message indicates the preference of these codecs for that payload type.

Applications that do not support these codecs MUST NOT advertise these codecs in an SDP message. In the case of RTP, if a particular codec was referenced with a specific payload type number specified in the a=rtpmap: attribute in the offer, that same payload type number MUST be used for that codec in the answer.

If a user agent supports the H.264UC video codec, it SHOULD also support the ULPFEC-UC video FEC media format. For more information on H.264UC and ULPFEC-UC, refer to [MS-H264PF].

### 3.1.5.4 Interpreting the Preference of Formats in the Format List

In this protocol, the media formats specified in an m= line for a particular media stream SHOULD be listed in order of preference. For the media formats, it can support the answering user agent and SHOULD use the same relative preference ordering as in the offer.

### 3.1.5.5 Format for Dual-Tone Multi-Frequency (DTMF) in SDP

The RTP payload type number used to specify DTMF, as specified in [MS-DTMF], in the m= line of the SDP message SHOULD be "101".

### 3.1.5.6 Restriction on the Name of the RTP Payload for Redundant Audio Data

The name of the payload used for redundant audio data, as specified in [MS-RTPRADEX], MUST be "RED" and is case-sensitive.

### 3.1.5.7 Restriction on the Name and sampling rate for comfort noise

The name of the payload used for comfort noise SHOULD be "CN" and the sampling rate SHOULD be 8,000 or 16,000. For more information, see [RFC3389].

### 3.1.5.8 Negotiating SRTP or SSRTP Optionally

To require SRTP encryption for a media stream, an application can use the SRTP, as specified in [RFC4568], to specify the secure audio video profile (SAVP) in an m= line of an SDP message as part of the SRTP negotiation. This is shown in the following example.

```
m=audio 50004 RTP/SAVP 8 97 101
```

This description, however, does not allow for the possibility to negotiate SRTP encryption optionally, in that the support of the SRTP encryption is desired but not required.

The mechanism described here to negotiate SRTP optionally also applies to SSRTP encryption.

To support SRTP or SSRTP encryption optionally, this protocol deviates from the specification in [RFC4568]; in a SIP INVITE request, an application MUST use audio video profile (AVP) in the m= line of the SDP offer, together with the a=crypto or a=cryptoscale attribute to negotiate media encryption using SRTP or SSRT. The application SHOULD bypass the negotiation of SRTP or SSRT encryption by not specifying any a=crypto and a=cryptoscale attributes. To acknowledge the ability to support the SRTP or SSRT encryption, the remote peer MUST respond to the SIP request in a SIP 200 OK response with an SDP message specifying "SAVP" in the m= line and the a=crypto attribute.
or a=cryptoscale attribute, respectively for SRTP or SSRTP, as part of the media description. All subsequent SIP re-INVITE requests MUST continue to have "SAVP". If the remote peer cannot support SRTP or SSRTP encryption, the remote peer MUST specify "AVP" in the m= line of the SDP answer and MUST NOT specify any a=crypto and a=cryptoscale attributes.

The following are examples of negotiating encryption.

The following example is a peer that sends an SDP offer in a SIP request to specify that it can support either SRTP or SSRTP encryption, but the support is not mandatory.

```plaintext
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:v5Swrmv9u07pdQvyHW7rf6yL8e3xrXT07Af74T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:10nVM8eJ2ZblVNeRaqtUeqjXwG0s0IrmoKh|2^31|1:1
```

If the peer is capable of supporting and does support, SRTP encryption, the following example is a response to the previous request with an SDP message.

```plaintext
m=audio 50014 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:v0ncVM8eK2bk0INeRaqcFegjXwG0s0sRalidZc|2^31|1:1
```

If the peer is not capable of supporting or does not support SRTP encryption, the following example is a response to the previous request with an SDP message.

```plaintext
m=audio 50104 RTP/AVP 8 97 101
```

The following example is a peer that sends an SDP offer in a SIP request to mandate either SRTP or SSRTP encryption support.

```plaintext
m=audio 50004 RTP/SAVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:v5Swrmv9u07pdQvyHW7rf6yL8e3xrXT07Af74T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:10nVM8eJ2ZblVNeRaqtUeqjXwG0s0sRalidZc|2^31|1:1
```

### 3.1.5.9 Connection-Oriented Media Address Support

In the SDP message, as specified in [RFC4566], the m= line is used to specify the transport for the given media type. The supported transport can be either User Datagram Protocol (UDP) or TCP. TCP is a connection-oriented transport by which the media is exchanged. UDP is not connection-oriented. The following is an SDP message fragment showing an m= line specifying that TCP be used as the media transport, as defined in [RFC4571].

```plaintext
m=audio 50004 TCP/RTP/AVP 8 97 101
```

However, the connection-oriented transport SHOULD NOT be used when ICE, as defined in [IETFDRIFT-ICENAT-06] or [IETFDRIFT-ICENAT-19], is not enabled on the offering application and the answering application. This applies to any offer or answer received from an application that does not support ICE.

If the offer or answer is received from an application that supports ICE, according to the ICE specifications in [IETFDRIFT-ICENAT-06] and [IETFDRIFT-ICENAT-19], the port and the transport
specified in the \texttt{m=} line are referred to as the active address or the address that will be tried first in the ICE methodology to establish connection.

Application sharing \textbf{SHOULD} \texttt{<11>} use \texttt{[MS-ICE2]} over TCP.

The ICE scenario is applicable if both peers support ICE, which can be established by examining the SDP offer and SDP answer.

For audio or video media, or other media types, a connection-oriented or TCP transport for the active addresses in the first SDP offer or SDP answer MUST NOT be used. A subsequent SDP offer/SDP answer exchanged in a re-\texttt{INVITE} might have a connection-oriented transport for the active address, depending on the operation of ICE.

For audio or video media, or other media types, any connection-oriented transport specified in the \texttt{m=} line in the first SDP offer or SDP answer \textbf{SHOULD} \texttt{<12>} be rejected, as specified in \texttt{[RFC3264]} section 6.

\section{Limited support for setup and connection Attributes}

TCP-based media transport in the SDP message, as specified in \texttt{[RFC4145]}, adds two new attributes to the SDP message. These are the \texttt{a=setup} and \texttt{a=connection} attributes. These attributes are used to establish and maintain TCP connections for the media exchange. However, the support for these attributes is limited in this protocol. These limitations are discussed in this section.

\subsection{Limited support for the \texttt{a=setup} Attribute}

TCP-based media transport in the SDP, as specified in \texttt{[RFC4145]}, states that the \texttt{a=setup} attribute can have the following roles for the purpose of establishing a TCP connection:

\begin{itemize}
  \item \texttt{"active"}
  \item \texttt{"passive"}
  \item \texttt{"actpass"}
  \item \texttt{"holdconn"}
\end{itemize}

When used in the context of this protocol, the \texttt{a=setup} attribute MUST have one of the following two values:

\begin{itemize}
  \item \texttt{"active"}
  \item \texttt{"passive"}
\end{itemize}

The behavior of the roles \texttt{"active"} and \texttt{"passive"} are the same as specified in \texttt{[RFC4145]} with the following exception.

If the initial offer has a value of \texttt{a=setup:active}, the answer also has a value of \texttt{a=setup:active}, but the offerer role is still considered to be active, because it is the \texttt{endpoint} that is initiating the outgoing connection. Subsequent offers and answers contain the correct values of \texttt{"active"} and \texttt{"passive"}.

\subsection{Limited support for the \texttt{a=connection} Attribute}

The TCP-based media transport in the SDP, as specified in \texttt{[RFC4145]}, states that the \texttt{a=connection} attribute can have the following values to indicate the status of a TCP connection.

\begin{itemize}
  \item \texttt{"new"}
  \item \texttt{"existing"}
\end{itemize}
When used in the context of this protocol, the \texttt{a=connection} attribute SHOULD have the "existing" value only. The \texttt{a=connection:new} attribute SHOULD only be used with the \texttt{m=application:sharing} media type, when the initial active media address is TCP-based.

The semantics of the "existing" value is specified in [RFC4145].

### 3.1.5.11 Text Telephony Support

A new media level attribute \texttt{a=ttty} is defined. It is included by a user agent to indicate that it has been configured to optimize the transfer of tones used in text telephony. Such tones could, for example, originate from a \textit{telecommunications device for the deaf (TDD)} – also referred to as a TTY (teletypewriter) – that interacts with the UC device via an audio coupler. The presence of this attribute can be used by the peer user agent as an indication to enable detection for such tones, and optimize for their transfer once detected.

Note that this attribute has no offerer/answer behavior. It is used to inform the peer user agent that a TTY device can be used.

### 3.1.5.12 Early Media Support

Early media refers to media exchange taking place before a session \texttt{INVITE} is accepted. This could be the initial greeting received by the user while the \textit{SIP} handshake is under way. Early media support amounts to getting an SDP answer in a provisional SIP response of the 18x levels and starting media exchange after processing the SDP answer. Provisional responses are specified in detail in [RFC3261] section 13. Early media support discussed in this document is not based on any specific standards protocol. It is the subject of the following sections.

#### 3.1.5.12.1 Restriction to Receiving an SDP Answer in Provisional Response

To support early media, all of the following conditions MUST be met when a user agent receives an SDP answer in the provisional response.

- ICE MUST be supported for early media.
- All SDP answers in the provisional responses MUST be the same.
- When the offer is forked, SDP answers not in reliable provisional responses, as specified in section 3.1.5.13, SHOULD be sent by a maximum of one device. For information about how to determine if an offer is forked, see [MS-SIPRE].

#### 3.1.5.12.2 Receiving an SDP Answer in Provisional Response and Starting Media Streams

Media streams are started after receiving an SDP answer in the provisional response, depending upon whether the \texttt{SIP INVITE} request was forked to \textit{multiple points of presence (MPOP)}.

A SIP INVITE request was forked if an \texttt{ms-forking} SIP header exists in any provisional response. The \texttt{ms-forking} header is added when the call is forked to MPOP by the SIP proxy or server. For a more detailed specification of this header, see [MS-SIPRE].

Depending on whether the SIP INVITE request was forked, media streams are started as follows:

- If an SDP answer is received in a provisional response and the SIP INVITE request was forked, the following are applicable:
  - The received streams SHOULD be started, if they are not already started.
  - The send stream SHOULD be started for sending DTMF only after receiving one or more RTP media packets via the corresponding receive stream.
• If an SDP answer is received in a provisional response and the SIP INVITE request was not forked, both the receive and send streams for sending DTMF only SHOULD<17> be started with the consideration that the send stream is started only after receiving one or more RTP media packets via the corresponding receive stream.

Additionally, speech for the media streams in the forward direction SHOULD NOT<18> be started until the 200 OK is received for the INVITE.

3.1.5.12.3 SDP Answer in Provisional and Final Responses

SDP answers received in the provisional response of the 18x-level and the final response of the 200-level can be different depending on whether the call is forked. Specifically, if the 18x arrived from one fork and the 200-level from another fork, the SDP answers received can be different.

If an answer was contained in an 18x-level, it SHOULD<19><20> be repeated without any changes in the 200 for the same fork.

If the call is not forked, the SDP answer received in the final 200 response SHOULD<21><22> be the same as the one received in the provisional 18x response.

However, a user agent that supports early media SHOULD accept an SDP answer in the final 200 response which differs, in any of the following ways, from the SDP answer in the provisional 18x response:

1. The stream direction attribute changes—for example, from a=sendrecv to a=recvonly—as long the stream direction in the final 200 response is compatible with the offer (according to the rules of [RFC3264] section 6.1).

2. The key value in an a=crypto or a=cryptoscale attribute changes.

3. A media stream, which was accepted in the SDP answer in the provisional response, is rejected in the final response. For example: the offer included both m=audio and m=video media streams, both streams were accepted in the provisional response, but the m=video stream was rejected in the final response.

For these cases, the user agent processing the final response SHOULD make effective the differences in the SDP answer from the provisional response.

3.1.5.12.4 ICE Processing When an SDP Answer is Received in the Provisional Response

When a SIP INVITE request is NOT forked and an SDP answer is received in the provisional response, ICE processing SHOULD<23> proceed as if the SDP answer was received in the final response.

3.1.5.13 Extensions for reliable provisional response processing and related offer/answer models

[RFC3262] specifies a means for SIP entities to send reliable provisional response within an early or established dialog. The following sections define client behavior and considerations specific to reliable provisional response and early media.

When negotiating early offer/answer prior to the call being answered, SIP user agents SHOULD<24> use the procedures specified in [RFC3262], with the following exceptions:

• A SIP user agent MUST NOT send any SIP request containing a Require header with the option tag of "100rel".

[MS-SDPEXT] - v20190618
Session Description Protocol (SDP) Version 2.0 Extensions
Copyright © 2019 Microsoft Corporation
Release: June 18, 2019
A SIP user agent SHOULD include **Require:100rel** in 183 responses. SIP user agents SHOULD use a reliable provisional 183 response containing an **SDP answer** to perform early connectivity checks or to negotiate early media.

Furthermore, SIP user agents SHOULD use the procedures specified in [IETF-DRAFT-OFFANS-08] when sending reliable provisional response with **SDP**, with the following exceptions:

- A SIP user agent MUST NOT negotiate more than one offer/answer before the call is answered.
- A SIP user agent MUST NOT include an **SDP offer** or SDP answer in a provisional response acknowledgement (PRACK, as defined in [RFC3262]) message or a **200 OK** response to a PRACK message.
- A SIP user agent MUST use a 1XX reliable response when responding to an **INVITE** with early media.
- A SIP user agent MUST use a 2XX response when responding to an INVITE of an established dialog.

When dealing with forked **endpoints** and early media, SIP user agents SHOULD also process 199 response code specified in [IETF-DRAFT-RCITD-199-01] to clean up early media state, if any. Information regarding when a 199 is sent is specified in [MS-SIPRE].

### 3.1.5.14 No Support for Renegotiation of SRTP or SSRTP Encryption Parameters

**SRTP** encryption parameters MUST NOT be renegotiated after the encryption is negotiated and the **session** is established.

**SSRTP** encryption parameters MUST NOT be renegotiated after the encryption is negotiated and the **session** is established.

### 3.1.5.15 Labeling a Media Description with an a=label Attribute

All active media descriptions, except those with **m=applicationsharing** media type, in an **SDP offer** or **SDP answer** SHOULD contain an **a=label** attribute. The syntax of the **a=label** attribute is defined in [RFC4574].

The **a=label** attribute helps identify the modality of the media **stream**. In particular, the attribute can distinguish the modality of a media description with type **m=video** as either main video or panoramic video.

For the audio modality, the label value MUST be "main-audio". For the main video modality (which might comprise multiple media channels), the label value MUST be "main-video". For the panoramic video modality, the label value MUST be "panoramic-video". **Other label values are not recognized and MUST be ignored by the receiving user agent.**

### 3.1.5.16 Address types in the c= line

The IP address type specified in a **c=** line of an **SDP** message MUST be either **Internet Protocol version 4 (IPv4)** or **IPv6**. **Other label values are not recognized and MUST be ignored by the receiving user agent.**

An IPv4 address SHOULD be used, if the **user agent** generating the SDP message has a choice of available IPv4 and IPv6 addresses.
3.1.5.17 No Support for Optional Parameters in the a=rtcp Attribute

As specified in [RFC3605], the a=rtcp attribute has the following format in ABNF notation, as described in [RFC5234]:

```
rtcp-attribute = "a=rtcp:" port [nettype space addrtype space connection-address] CRLF
```

Optional parameters are allowed in addition to the port parameter. However, this protocol only supports the use of the port parameter in the a=rtcp attribute and stipulates that the optional parameters after the port parameter MUST NOT be used.

3.1.5.18 Application sharing media stream/type m=applicationsharing

This protocol defines a new media type, applicationsharing, which represents an RDP-based media stream/session. An application sharing m= line identifies exactly one RDP session.

Application sharing media requires a lossless transport and therefore the only candidates supported are TCP-based, as specified in [RFC4145] and [IETF/DRAFT-ICETCP-07].

Application sharing does not support early media.

In the context of this media type five new SDP attributes are defined.

3.1.5.18.1 a=x-applicationsharing-session-id attribute

The session-id attribute is used to uniquely identify an RDP session on one end. This attribute is optional; if missing, a viewer is going to be connected to the first available session. Session-id has the following format in ABNF notation, as described in [RFC5234]:

```
session-id-attribute = "a=x-applicationsharing-session-id:" *(alphanum) CRLF
```

3.1.5.18.2 a=x-applicationsharing-role attribute

The a=x-applicationsharing-role attribute determines the RDP sharing role of the party. This attribute SHOULD be present. The party that is sharing MUST set the role to "sharer" and the party that is viewing MUST set the role to "viewer." The following table lists the role for the answer based on the role in the offer.

<table>
<thead>
<tr>
<th>Offer</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=x-applicationsharing-role:sharer</td>
<td>a=x-applicationsharing-role:viewer</td>
</tr>
<tr>
<td>a=x-applicationsharing-role:viewer</td>
<td>a=x-applicationsharing-role:sharer</td>
</tr>
</tbody>
</table>

If the SDP session contains multiple application sharing m= lines, the (session-id, role) pair SHOULD be unique for each active m= line.

The RDP role-attribute has the following format in ABNF notation, as described in [RFC5234]:

```
role-attribute = "a=x-applicationsharing-role:" ("sharer" | "viewer") CRLF
```
3.1.5.18.3  a=x-applicationsharing-media-type attribute

This attribute is used to negotiate the RDP media type to be used. This attribute is optional; the default is "", indicating that this is a signaling-only session with no associated media stream. The value "rdp" indicates that RDP media stream can be established. The rdp-media-type-attribute has the following format in ABNF notation, as described in [RFC5234]:

```
rdp-media-type-attribute = "a=x-applicationsharing-media-type:" <list-of-supported-mediast>: <rdp-flavor> *(SPACE <rdp-flavor>)
<rdp-flavor>: "rdp" | ""
SPACE: %d32
```

3.1.5.18.4  a=mid attribute

The a=mid attribute is used as an identifier of the media described by the m= line. This attribute SHOULD be included.

Every time a new m= line media is added to the SDP message, the value of a=mid is incremented by 1.

The media-identifier-attribute has the following format in ABNF notation, as described in [RFC5234]:

```
media-identifier-attribute="a=mid:" 1*DIGIT CRLF
```

3.1.5.18.5  a=applicationsharing-contentflow attribute

The a=x-applicationsharing-contentflow attribute is used to negotiate the RDP direction of flow of media stream. The attribute is optional; its absence indicating that RDP media stream is allowed to flow in all directions. This attribute SHOULD be included.

applicationsharing-contentflow has the following format in ABNF notation, as described in [RFC5234]:

```
contentflow-attribute = "a=x-application-contentflow:" ("sendonly" | "recvonly" | "inactive") CRLF
```

The value "sendonly" indicates that the party making the SDP offer wants to negotiate the direction of flow of RDP media stream as from the offerer to the party receiving the SDP offer. Similarly, the value "recvonly" indicates that the offerer wants to negotiate the direction of flow of media stream from the party receiving the SDP offer to the party negotiating it. The value "inactive" indicates that the media stream is paused and not to flow in either direction.

The following table lists the possible values of the attribute in the SDP offer and the corresponding SDP answer.

<table>
<thead>
<tr>
<th>Offer</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=x-applicationsharing-contentflow:sendonly</td>
<td>a=x-applicationsharing-contentflow:recvonly or a=x-applicationsharing-contentflow:inactive</td>
</tr>
<tr>
<td>a=x-applicationsharing-contentflow:recvonly</td>
<td>a=x-applicationsharing-contentflow:sendonly or a=x-applicationsharing-contentflow:inactive</td>
</tr>
<tr>
<td>a=x-applicationsharing-contentflow:inactive</td>
<td>a=x-applicationsharing-contentflow:inactive</td>
</tr>
</tbody>
</table>
3.1.5.19 Interpretation of o= line in the SDP

The o= line of an SDP message, as specified in [RFC4566], specifies the session originator and session identifiers that include the session identifier, session version, network type, address type, and unicast address. ABNF notation, as described in [RFC5234], of the o= line is as follows:

\[o=<username> <sess-id> <sess-version> <nettype> <addrtype> <unicast-address>\]

- The sess-id parameter MUST be ignored on a receive.
- The sess-version parameter MUST be a numeric value but the value MUST be ignored on a receive. This parameter is not incremented in subsequent SDP offers or SDP answers.<32>.
- The nettype parameter MUST be "IN".
- The addrtype parameter MUST be either "IP4" or "IP6".<33>.
  - If the addrtype is "IP4" the unicast-address parameter MUST be the dotted-decimal representation of the IP version 4 address.
  - If the addrtype is "IP6" the unicast-address parameter MUST be the textual representation of the IP version 6 address.

3.1.5.20 Deviations from ICE-06

ICE, as specified in [IETFDRIFT-ICENAT-06], is a methodology to let media traverse NAT and firewalls to reach the remote peer. The following subsections describe the deviations from the standard ICE specification.

A user agent SHOULD<34> support this version of ICE based on [IETFDRIFT-ICENAT-06].

3.1.5.20.1 General Outline of the ICE Methodology

In general, ICE works as follows:

1. A peer, or offerer, gets all its addresses at which it can be reached and provides them in an SDP offer.
2. The SDP offer is sent to the remote peer.
3. The remote peer gets all its addresses at which it can be reached and provides them in an SDP answer.
4. On receiving the SDP offer, both the offerer and the answerer begin to exchange packets to determine the optimal path for media traversal. This process of determining the optimal path is referred to as connectivity checks in the subsequent discussions.
5. After this optimal path is determined, the offerer sends a SIP re-INVITE to the remote peer, communicating the optimal address in the SDP offer. This SIP re-INVITE is referred to as an ICE re-INVITE in the subsequent sections of this document. An indicator of the ICE re-INVITE is the existence of an a=remote-candidate attribute for a modality. This attribute is absent in the previous SIP INVITE or SIP re-INVITE. For more details, see [IETFDRIFT-ICENAT-06].

3.1.5.20.2 ICE RE-INVITE Initiator

According to [IETFDRIFT-ICENAT-06], an ICE re-INVITE is sent by the offerer of that media. This protocol deviates from that specification, and stipulates that the ICE re-INVITE MUST be sent by the
offeree of the call and not the offerer of the modality. This means that the caller MUST send the ICE re-INVITE.

This also means that if the local peer starts an audio call with a remote peer and then, after some time, the remote peer adds video to this call, the ICE re-INVITE for video MUST be sent by the local peer, instead of by the remote peer. In contrast, the [IETF/DRAFT-ICENAT-06] specification requires that the ICE re-INVITE for video is sent by the remote peer in a similar case.

### 3.1.5.20.3 No Update of Candidates Between INVITE and ICE RE-INVITE

According to [IETF/DRAFT-ICENAT-06], the list of addresses exchanged in the original SIP INVITE can be updated anytime between the first INVITE and the ICE re-INVITE by sending a SIP UPDATE or SIP re-INVITE request. However, this protocol stipulates that an application MUST NOT add or remove addresses using SIP UPDATE or SIP re-INVITE until the connectivity checks have finished or until an ICE re-INVITE is exchanged successfully.

### 3.1.5.20.4 Extending the Transport to Connection-Oriented (TCP)

ICE, as specified in [IETF/DRAFT-ICENAT-06], specifies that UDP be used as the transport and allows extensions to add other transport. This protocol adds TCP to the supported transport type in ICE. Thus, the following examples are both permitted:

```plaintext
a=candidate:ir84fUlcDqYH50bs2M/Xn/pDNE+fVfxRTbXBWG34FM8 2 lvvq9h3j8xixI3npD0X9VA UDP
0.830 10.56.65.184 63616
a=candidate:Miwhbdy6g31nwkKtoJWa8h9hL1pQ90uT/EiBDDvBPB4 1 76CTu2GKtYnu2ZydjXA TCP
0.190 172.29.105.45 50663
```

### 3.1.5.20.5 No IPv6 transport addresses

The transport address given in an a=candidate attribute MUST be an IPv4 address.

### 3.1.5.21 Deviation from ICE V19

ICE, as specified in [IETF/DRAFT-ICENAT-19], is a methodology to let media traverse NAT and firewalls to reach the remote peer. Support of ICE in this protocol differs from that specified in that document. The following subsections describe deviations from the standard ICE specification.

A user agent SHOULD <35> support this version of ICE based on [IETF/DRAFT-ICENAT-19].

### 3.1.5.21.1 Support for IPv6 transport addresses

According to [IETF/DRAFT-ICENAT-19] section 5.1, an ICE a=candidate attribute contains two fields which transmit an IP address: connection-address and the optional rel-addr. Although the grammar permits these fields to contain an IPv6 address, a non-IPv6-aware user agent might malfunction parsing such an a=candidate attribute. This section describes an SDP extension for offering IPv6 ICE candidates as a way to avoid interoperability problems with non-IPv6-aware peer user agents.

A user agent SHOULD <36> be able to successfully parse a a=candidate attribute containing an IPv6 address in the connection-address and/or rel-addr fields. If the receiving user agent does not support IPv6, it SHOULD ignore an a=candidate attribute containing an IPv6 connection-address. However, the non-IPv6-capable user agent MUST accept an a=candidate attribute containing an IPv4 connection-address field with an IPv6 rel-addr. The rel-addr field is not used in the ICE protocol itself, but is for informational purposes only, and so MUST be allowed by the receiving user agent.
If the user agent is sending an **SDP offer** or **SDP answer** and has ICE candidates with an IPv6 connection-address, then there is a concern whether the peer user agent will parse the SDP message properly. If the user agent does not know whether its peer is capable of parsing an IPv6 connection-address, it **SHOULD** use a new **a=x-candidate-ipv6** attribute (defined in the next section) to transmit the ICE candidate.

On the other hand, if the user agent does know that its peer is IPv6-capable then it **SHOULD** use the standard **a=candidate** attribute to transmit an ICE candidate. A user agent can discover that its peer is IPv6-capable if a previous SDP offer or SDP answer received from the peer included an ICE candidate containing an IPv6 addresses (in either an **a=candidate** attribute or **a=x-candidate-ipv6** attribute).  

### 3.1.5.21.1.1 **a=x-candidate-ipv6** attribute

The syntax of this attribute is identical, other than the attribute’s name (**x-candidate-ipv6**), to the **a=candidate** attribute defined in [IETF-DRAFT-ICENAT-19] section 5.1, with one additional requirement. The **connection-address** field **MUST** be an IPv6 address. If the **connection-address** type is not IPv6, the **a=x-candidate-ipv6** attribute **MUST** be rejected as syntactically incorrect.

Like the **a=candidate**, the **a=x-candidate-ipv6** attribute is a media-level SDP attribute only.

The **ICE** candidate given in an **a=x-candidate-ipv6** attribute (consisting of foundation, transport, connection-address, port and candidate-type token values) **MUST NOT** duplicate an ICE candidate given in an **a=candidate** attribute.

### 3.1.5.21.2 LITE implementation

According to [IETF-DRAFT-ICENAT-19], there are two implementations of **ICE** – FULL implementation and LITE implementation. This protocol does not support the LITE implementation. This means that this protocol **SHOULD <37>** gather the **Relayed Candidates** and **Server Reflexive Candidates** and perform connectivity checks as specified in [MS-ICE2].

### 3.1.5.21.3 Ice-options attributes

According to [IETF-DRAFT-ICENAT-19], an offer or an answer is allowed to use the **ice-options** attribute to identify the **ICE** extensions supported by that agent. If an agent supports an extension, it includes the token that represents that extension in the **ice-options** attributes.

This protocol does not support the **ice-options** attribute. It **SHOULD NOT <38>** generate an SDP message with this attribute and **SHOULD** ignore this attribute if it is present in the SDP message received.

### 3.1.5.21.4 Ice-mismatch attributes

According to [IETF-DRAFT-ICENAT-19], this attribute, when present in an answer, indicates that the agent that sends the offer contains a default destination for a media component that did not have a corresponding candidate attribute.

This protocol does not support this attribute. It **SHOULD NOT <39>** generate an answer with this attribute. If received as an answer to an offer, this protocol **SHOULD** ignore this attribute.

For offers that are generated by this protocol, the default destination for a media component **SHOULD <40>** have a corresponding candidate attribute.

### 3.1.5.21.5 ice-ufrag and ice-pwd attributes

According to [IETF-DRAFT-ICENAT-19], the **ice-ufrag** attribute can be 4 to 256 bytes long and the **ice-pwd** attribute can be 22 to 256 bytes long, and they are in plaintext. This protocol determines if **base64 encoding** is used in the offer by checking their lengths. Therefore, so that the answering
agent does not treat plaintext as an encoded string, this protocol SHOULD NOT use an ice-ufrag attribute of 6 bytes and an ice-pwd attribute of 32 bytes long in an offer.

### 3.1.5.22 Deviation from ICE-TCP-07

ICE, as specified in [IETF-DRAFT-ICENAT-06] and [IETF-DRAFT-ICENAT-19], defines ways for media traffic to traverse NAT and a firewall. These specifications provide a general framework for describing candidates, which only use the UDP transport protocol.

[IETF-DRAFT-ICETCP-07] extends the ICE protocol to include TCP transport protocol.

The deviations from these specifications are described in the subsections that follow.

#### 3.1.5.22.1 Default Candidate

For audio and video calls, the default candidate SHOULD NOT be TCP. For application sharing calls, the default candidate SHOULD be TCP.

#### 3.1.5.22.2 Local Candidate

For audio and video media type, this protocol does not gather passive local Host Candidates for TCP. Therefore the SDP message SHOULD NOT have any passive TCP local host candidates.

For application sharing media type, the local candidates SHOULD be TCP.

### 3.1.5.23 Extensions for call hold and retrieve

The following specifies client behavior for the offer and answer negotiated for hold and un-hold operations when in an audio or video call.

#### 3.1.5.23.1 Invoking hold

A protocol client invoking hold is required to do the following for all audio and video media streams in the resulting offer:

- The client SHOULD change the direction of all streams to "inactive".
- The client SHOULD include sip.rendering, as specified in [MS-SIPRE], with a value of "no".

#### 3.1.5.23.2 Clearing hold (retrieve)

In order to clear the hold, or retrieve the call, the protocol client is required to do the following for all audio and video media streams in the resulting offer:

- The client SHOULD change the direction of all streams to "sendrecv".
- The client SHOULD exclude sip.rendering, as specified in [MS-SIPRE].

### 3.1.5.24 Extension for video receive capabilities a=x-caps

This protocol defines a video media level attribute a=x-caps, which represents what a video receiver is capable of receiving. A video capability a= line defines video capabilities for each of the video codec the video receiver is capable of receiving.

This attribute is optional; if missing, a video sender SHOULD set the video receive capabilities of the remote peer as Common Intermediate Format (CIF) at 15 fps and Video Graphics Array (VGA) at 15 fps. Quarter CIF (QCIF, which represents a video resolution of 176 width by 144 height), CIF and...
VGA MUST be advertised in the list of Video capabilities for a media stream that has an a=label:main-video SDP attribute. A video capability of VGA 13 fps MUST be treated as VGA 15 fps.

High-definition (HD), which represents a video resolution of 1280 width by 720 height, is an additional video capability that can be advertised by a video receiver.

High-definition 1080p (HD1080p), which represents a video resolution of 1920 width by 1080 height, is an additional video capability that can be advertised by a video receiver.

This media attribute has the following format in ABNF notation, as described in [RFC5234]:

Video-Capabilities-media-type-attribute:

"a=x-caps:" <video-payload-type> SPACE <list-of-video-capabilities> CRLF

video-payload-type: The RTP payload type number for video, such as 121 for x-rtvc1.

list-of-video-capabilities:

<video-capability>";"<video-capability>

video-capability:

<Capability-ID>";"<Width-of-video-frame>";"<Height-of-video-frame>";"<frames-per-second>";"<maximum-bitrate-bits-per-second>";"<additional-attributes>

Capability-ID (integer): A unique random integer among the listed capability ID for that m= line. The value is between 1 and 2147483647 in the entire video-capabilities-media-type-attribute.

Width-of-video-frame (integer): The width is one of the following values:
- 176 for QCIF
- 352 for CIF
- 640 for VGA
- 1280 for HD
- 1920 for HD1080p

Height-of-the-video-frame (integer): The height is one of the following values:
- 144 for QCIF
- 288 for CIF
- 480 for VGA
- 720 for HD
- 1080 for HD1080p

frames-per-second (float): Value SHOULD be less than or equal to 30.0 fps. Any values beyond 30.0 SHOULD be treated as 30.0. The value specifies the maximum frame rate the receiver is capable of receiving.

maximum-bitrate-in bits-per-second (integer): Ignored, and reserved for future use.
Any additional attributes SHOULD be ignored, and reserved for future use.

A protocol peer, upon receiving the video capabilities SHOULD do the following:

- If there is a "," in a `video-capability` attribute, anything from "," to the end of `video-capability` (";" or CRLF) SHOULD be ignored.
- If there is a syntax error in `a=x-caps`, the whole `a=x-caps` SHOULD be ignored and video receive capabilities of the remote peer SHOULD be set as CIF at 15 fps or VGA at 15 fps.

The following is an example `a=x-caps` attribute:

```
a=x-caps:121
263:1920:1080:30.0:2000000:1;4359:1280:720:30.0:1500000:1;8455:640:480:30.0:600000:1;12551:64
0:360:30.0:600000:1;16647:352:288:15.0:250000:1;20743:424:240:15.0:250000:1;24839:176:144:15.
0:180000:1
```

The `a=x-caps` attribute is not supported for the H.264UC or ULPFEC-UC video media formats (section 3.1.5.3). An `a=x-caps` attribute SHOULD NOT be included for H.264UC or ULPFEC-UC. An `a=x-caps` attribute for H.264UC or ULPFEC-UC, if present in a received SDP message, MUST be ignored.

### 3.1.5.25 Extensions to optimize the media path to a gateway

This section describes the extensions used by the client to optimize the media path to a gateway in the same location. These extensions SHOULD be used by SIP protocol clients that support `ms-bypass`, as specified in [MS-OCPSTN].

#### 3.1.5.25.1 `a=x-bypassid` attribute

The `a=x-bypassid` attribute is a declarative attribute used to indicate the location of the media endpoint associated with an SDP offer. It is a media level attribute that MUST be sent in an offer by the client to establish a baseline for the possibility of doing media bypass.

When the SIP protocol client receives a multipart/alternative MIME body in the offer, it first looks for a part of type `application/GW-SDP`. If one is found and the `x-bypassid` values match, that part is chosen.

#### 3.1.5.25.2 `a=x-bypass` attribute

The `a=x-bypass` attribute is a declarative attribute that signifies that the media line with which it is associated involves bypass. It is a media level attribute that MUST be sent when the answerer has chosen the bypass path.

#### 3.1.5.25.3 `a=x-mediasettings` attribute

The `a=x-mediasettings` attribute SHOULD be added by a user agent to signify the following stream capabilities:

- `holdrtcpun supported`: SHOULD be added by a user agent to signify that RTCP is not supported when the call is on hold. If present in the negotiated SDP, the client MUST NOT expect RTCP when the call is on hold.
- `rtcpun supported`: SHOULD be added by a user agent to signify that RTCP is not supported. If present in the negotiated SDP, the client MUST NOT expect RTCP for the call.
• **signalboostunsupported**: SHOULD be added by a user agent to signify that its media stream is not amplified. If present in the negotiated SDP, the client SHOULD apply amplification on the incoming media stream.

The grammar for this attribute is defined as follows.

```
a=x-medi SETTINGS:(holdrtcpunsupported/rtcp unsupported/signalboostunsupported)*(SPACE holdrtcpunsupported/rtcpunsupported/signalboostunsupported)
```

### 3.1.5.26 Extensions for diagnostic info in SDP messages

This protocol defines a new media level attribute `a=x-ms-SDP-diagnostics`. An **SDP endpoint** SHOULD add this attribute if it requires the receiving endpoint to display a notification regarding the status of the SDP session.

The format for the `a=x-ms-SDP-diagnostics` in **ABNF**, as described in [RFC5234], is as follows. It is similar to that of the **ms-diagnostics-public header** defined in [MS-OCER].

The parameters **EQUAL**, **HCOLON**, **SEMI**, **generic-param**, and **quoted-string** are as defined in [RFC3261] section 25.1.

```
a EQUAL x-ms-SDP-diagnostics HCOLON ErrorId *(.SubErrorId) SEMI reason-param * (SEMI generic-param)
```

**ErrorId** (**unsigned-integer**): Required. Value MUST be within unsigned 32-bit integer range. Represents a specific error condition, and SHOULD be used by the **SIP protocol client** to determine error handling behavior.

**SubErrorId** (**unsigned-integer**): Optional. If present, its value MUST be within the unsigned 32-bit integer range. **SubErrorId** can be used to differentiate related scenarios that result in the same **ErrorId**, and can be used by the **SIP** client to determine error handling behavior.

**reason-value**: Optional. The reason SHOULD indicate an explanation of the error. A SIP client SHOULD NOT use this parameter value to determine error handling behavior. This parameter value can be used for SIP server troubleshooting purposes.

`*(SEMI generic-param)**: Optional. Can be used to define custom attribute-value pairs, to convey additional troubleshooting information to the SIP client.

The following table lists the allowed values. More values might be added in the future. If an **ErrorId** not listed here is received by an SDP endpoint, it SHOULD be ignored.

<table>
<thead>
<tr>
<th>ErrorId</th>
<th>Reason string</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>53000</td>
<td>Insufficient Bandwidth Available</td>
<td>Bandwidth policy checks on server failed for this particular m= line.</td>
</tr>
<tr>
<td>53001</td>
<td>Candidates Restricted</td>
<td>Bandwidth policy checks required some of the original a=candidate lines to be removed for bandwidth limitation reasons.</td>
</tr>
</tbody>
</table>
Following example **SDP answer** contains an **a=x-ms-sdp-diagnostics** attribute in the media description for **m=video**:

```
v=0
o=-- 168 0 IN IP4 172.18.0.106
s=session
c=IN IP4 172.18.0.106
b=CT:1000
m=audio 51038 RTP/SAVP 9 111 0 8 97 101 13 118
c=IN IP4 172.18.0.106
a=rtcp:51039
a=ice-pwd:uSvOqE8rr1f206SN/AymKLpL
a=candidate:1 1 UDP 2130706431 172.18.0.106 51038 typ host
a=candidate:1 2 UDP 2130705918 172.18.0.106 51039 typ host
a=candidate:3 1 tcp-act 1684798719 172.18.0.106 50112 typ srflx raddr 172.18.0.106 rport 50112
a=candidate:3 2 tcp-act 1684798206 172.18.0.106 50112 typ srflx raddr 172.18.0.106 rport 50112
a=label:main-audio
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:8q4vHtbYV3uIM7z+jgLTXlWf9vedTHX10MB|2^31|1:1
a=rtpmap:9 g722/8000
a=fmtp:9 bitrate=64000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:97 RED/8000
a=fmtp:97 red/8000
a=rtpmap:101 telephone-event/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=ptime:20
m=video 0 RTP/AVP 121
a=x-ms-sdp-diagnostics:53000; reason="Insufficient Bandwidth Available"
a=label:main-video
a=rtpmap:121 x-rtvc1/90000
a=fmtp:121 CIF=15;VGA=15;PANO=15
```

### 3.1.5.27 Extensions for Music-on-Hold

This section specifies **SDP** extensions that a **user agent** can use in **SDP offers** to indicate that music-on-hold is being streamed in a given media **session**.

#### 3.1.5.27.1 **a=feature attribute**

The **a=feature** attribute is a declarative media-level attribute that specifies additional features for its associated media line. Its syntax is as follows:

```
a EQUAL feature HCOLON 1*alphanum
```

The parameters **EQUAL, HCOLON, and alphanum** are as defined in [RFC3261] section 25.1. The alphanumeric string to the right of the colon indicates the particular feature being attributed to the associated media. For music-on-hold, it MUST be "MoH". Additional values might be defined in the future to signal other features besides music-on-hold.

#### 3.1.5.27.2 **User agent behavior for a=feature attribute**
If a user agent wishes to use these extensions to signal that it is streaming music-on-hold, its offer MUST contain a=sendonly and a=feature:MoH attribute lines for those media. The a=feature:MoH line MUST NOT appear under any other media line than m=audio.

If all media lines in the SDP offer contain an a=feature:MoH attribute line, the SIP Contact header SHOULD include sip.rendering, specified in [RFC4235] section 5.2, with a value of "no".

When a user agent receives an SDP offer with a=feature:MoH, it can choose to render a user interface for hold or music-on-hold. When a user agent receives an SDP offer with features that it does not understand, it SHOULD ignore them.

### 3.1.5.28 Extensions for media bandwidth

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer what bandwidth it has available to send and receive media for a particular modality.

This extension is useful when, for example, a video modality is supported with a codec which supports a multitude of frame rate and resolution combinations. The user agent can declare the bandwidth it has available for its receive stream, which the peer can use to configure the video codec on its send stream such that its output bandwidth consumption does not exceed the receive stream bandwidth limit declared in the a=x-mediabw attribute.

#### 3.1.5.28.1 a=x-mediabw attribute

The a=x-mediabw attribute is a declarative session-level attribute that specifies the send and receive bandwidth limits for a particular modality. These values are given from the perspective of the user agent that created the SDP message containing the attribute.

The syntax of the attribute is:

```
"a=x-mediabw:" label SPACE "send=bandwidth ";recv=bandwidth
```

- `label = token`
- `bandwidth = unsigned-integer`

The bandwidth value MUST be a decimal integer in the range 0 to 4294967295 inclusive. The bandwidth value is interpreted in kilobits-per-second (1000 Kbps). For example, a bandwidth value of 1500 represents 1,500,000 bits per second. A value of zero means no bandwidth is available for that stream direction.

The value following the "send=" token is the send stream bandwidth limit; the value following the "recv=" token is the receive stream bandwidth limit.

The syntax of the label token is as defined in [RFC4566] section 9.

The x-mediabw attribute is a session-level only attribute. It MUST NOT be present within a media description. If present within a media description, it MUST be ignored by the receiving user agent.

There MUST NOT be more than one session-level x-mediabw attribute specifying the same label value. If there are multiple x-mediabw attributes with the same label value, the receiving user agent will pick an arbitrary attribute and ignore the others.

The x-mediabw attribute(s) of an SDP message MUST NOT be modified in a subsequent renegotiation. If the bandwidth values change in a renegotiation, the new values MUST be ignored. If a renegotiation introduces a new modality, the SDP offer SHOULD add a new x-mediabw attribute for it.
3.1.5.28.2  User agent behavior for a=x-mediabw attribute

For the bandwidth limits to be effective, the label value of the x-mediabw attribute MUST match the media-level a=label attribute of one or more media descriptions within the SDP message, and the label value MUST be recognized by the user agent receiving the SDP message.

For the audio modality, the label value MUST be "main-audio". For the main video modality (which might comprise multiple media channels), the label value MUST be "main-video". For the panoramic video modality, the label value MUST be "panoramic-video". If the label value is not recognized by the receiving user agent, the attribute MUST be ignored.

If the label value is recognized by the receiving user agent, and one or more media streams with that label exist within the media session, the bandwidth values in the attribute SHOULD be applied. If there is more than one active media channel with the same label value (for example, "main-video"), the bandwidth limits apply to the total bandwidth consumed by all the media channels of that modality. The receiving user agent applies the receive bandwidth limit from the x-mediabw attribute as an upper bandwidth consumption limit to its send streams. (The bandwidth consumed by the send stream for the user agent might also be constrained by other factors, unrelated to the x-mediabw attribute.)

3.1.5.29  Extensions for declaring device capabilities

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer its device capabilities, that is, what media types it is capable of sending and/or receiving and rendering within its user interface. It is assumed that indicating support for receiving implies the user agent is capable of rendering such media within its user interface.

This extension allows a user agent to inform its peer that it is capable, for example, of sending and receiving video media, for example, because its endpoint has a connected web camera device.

Declaring a device capability does not mean a user agent will negotiate a media stream for the corresponding modality, but only that it has the capability of sending/receiving/rendering a particular media type.

3.1.5.29.1  a=x-devicecaps attribute

The a=x-devicecaps attribute is a declarative session-level attribute that indicates the media types the user agent is capable of sending and/or receiving.

The syntax of the attribute is:

"a=x-devicecaps:" device-capability *[";" device-capability]

device-capability = device-type ":" capability-type *["," capability-type]

device-type = "audio" | "video" | "applicationsharing" | "data" | token

capability-type = "send" | "recv" | token

The syntax of token is as defined in [RFC4566] section 9. The presence of token within the grammar enables future extensibility.

There MUST NOT be duplicated capability-type token values for a device-capability. For example, a=x-devicecaps:audio:send,send is invalid.

There MUST be at most one device-capability declared for a given device-type. If there is more than one, the receiving user agent will pick an arbitrary device-capability and ignore the others for the device-type.
The `x-devicecaps` attribute is a session-level only attribute. It MUST NOT be present within a media description. If present within a media description, it MUST be ignored by the receiving user agent.

The following example `a=x-devicecaps` attribute indicates the user agent has audio and video capture devices and can also render audio and video media within its user interface (for example, play audio through speakers and display video on a screen).

```
a=x-devicecaps:audio:send,recv;video:send,recv
```

### 3.1.5.29.2 User agent behavior for `a=x-devicecaps` attribute

A user agent SHOULD indicate in any SDP message it sends what device capabilities it currently supports using the `a=x-devicecaps` attribute.

However, an MCU SHOULD NOT include any x-devicecaps attributes in SDP messages it sends, and SHOULD ignore the x-devicecaps attribute in any SDP messages it receives.

If the device-type is not recognized by the receiving user agent, the device-capability MUST be ignored.

If the device-type is recognized, the receiving user agent SHOULD indicate the peer’s device capability within its user interface in some appropriate fashion. For example, for the video device-capability, the user agent can display a web camera icon, to suggest that a video modality can be engaged with the peer.

### 3.1.5.30 Extensions for RTCP-based feedback messages

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer the capability to send and receive certain RTCP-based feedback messages using a special Reduced-Size format.

#### 3.1.5.30.1 `a=rtcp-rsize` attribute

The `a=rtcp-rsize` attribute is a declarative media-level attribute to indicate that all RTCP-based feedback messages (declared by the `a=rtcp-fb` media-level attribute) can be sent and received in a Reduced-Size format, as specified in [MS-RTP] section 2.2.11.

The syntax of the attribute is:

```
"a=rtcp-rsize"
```

The `a=rtcp-rsize` attribute is a media-level only SDP attribute. An `a=rtcp-rsize` attribute present at the SDP session-level MUST be ignored.

This attribute SHOULD NOT be included in a media description that also contains ICE `a=candidate` attributes, as defined in [IETF-DRAFT-ICENAT-06]. If the media description supports ICE as defined in [IETF-DRAFT-ICENAT-06], the `a=rtcp-rsize` attribute MUST be ignored by the receiving user agent.

#### 3.1.5.30.2 `a=rtcp-fb` attribute

The `a=rtcp-fb` attribute is a declarative media-level attribute to indicate what RTCP-based feedback messages can be sent by, and received from, the associated media stream.

This attribute extends the `a=rtcp-fb` RTCP feedback capability attribute defined in [RFC4585] section 4.2 with a custom "x-message" feedback type.
The syntax of the attribute is:

"a=rtcp-fb:" rtcp-fb-pt SPACE rtcp-fb-val

rtcp-fb-pt = "*" / fmt
fmt = integer
rtcp-fb-val = rtcp-fb-id [rtcp-fb-param]
rtcp-fb-id = "x-message" / token
rtcp-fb-param = SPACE "app" [SPACE rtcp-fb-app-param]
SPACE token [SPACE byte-string]
rtcp-fb-app-param = rtcp-fb-send-param [SPACE rtcp-fb-recv-param]
SPACE rtcp-fb-recv-param [SPACE rtcp-fb-send-param]
rtcp-fb-send-param = "send:" rtcp-fb-sendrecv-caps
rtcp-fb-recv-param = "recv:" rtcp-fb-sendrecv-caps
rtcp-fb-sendrecv-caps = rtcp-fb-sendrecv-cap *("", rtcp-fb-sendrecv-cap)
rtcp-fb-sendrecv-cap = "dsh" / "src" / "x-pli" / token

The ABNF terms integer, token, byte-string are defined in [RFC4566].

An a=rtcp-fb attribute that conforms to this syntax but does not begin with "* x-message app" SHOULD be ignored.

The following briefly describes the meanings of the rtcp-fb-sendrecv-cap capability tokens:

- **dsh**: Dominant Speaker History Notification.
- **src**: Video Source Request.
- **x-pli**: Picture Loss Indicator.

For additional information about these capabilities, refer to [MS-RTP] section 2.2.11.

In the following example, the a=rtcp-fb attribute declares send and receive Video Source Request and Picture Loss Indicator capabilities.

```
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
```

If an a=rtcp-fb attribute declares a send or receive capability that is not supported by the receiving user agent for the associated media stream, the capability MUST be ignored. For example, the dsh capability applies only to m=audio media descriptions and is ignored if declared for an m=video media description.

The a=rtcp-fb attribute is a media-level only SDP attribute. An a=rtcp-fb attribute present at the SDP session-level MUST be ignored.

This attribute SHOULD NOT be included in a media description that also contains ICE a=candidate attributes as defined in [IETFDRAFT-ICENAT-06]. If the media description supports ICE as defined in [IETFDRAFT-ICENAT-06], the a=rtcp-fb attribute MUST be ignored by the receiving user agent.

### 3.1.5.30.3 User agent behavior for a=rtcp-rsize and a=rtcp-fb attributes
If a media description declares support for RTCP-based feedback messages using an `a=rtcp-fb` attribute, the media description MUST also include the `a=rtcp-rsize` attribute.<57>

### 3.1.5.31 Extensions for Synchronization Source (SSRC) range allocation

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer a range from which the user agent will allocate SSRC values on a media channel send stream.

#### 3.1.5.31.1 a=x-ssrc-range attribute

The `a=x-ssrc-range` attribute is a declarative media-level attribute which defines the range from which any SSRC values used on the send stream will be allocated. The range is inclusive.

The syntax of the attribute is:

```
"a=x-ssrc-range:" range-start "-" range-end
range-start = integer
range-end = integer
```

The ABNF term integer is as defined in [RFC4566].

The additional following constraints apply to the values of range-start and range-end:

1. range-start MUST be equal to or greater than one;
2. range-end MUST be equal to or greater than range-start;
3. range-end MUST be less than or equal to 4294967040.

The SSRC range given by the `a=x-ssrc-range` attribute in a media description MUST NOT overlap the SSRC range defined for any other active media description located above it in the same SDP message. Otherwise, the media description SHOULD be rejected. That is, all active media channels in the SDP message with an `a=x-ssrc-range` attribute MUST have non-overlapping SSRC ranges. Two ranges `a=x-ssrc-range:A-B` and `a=x-ssrc-range:X-Y` overlap if any value `z` exists where `X <= z <= Y` and also `A <= z <= B`.

The `a=x-ssrc-range` attribute does not apply to the `m=applicationsharing` media type. An `m=applicationsharing` media description SHOULD NOT contain an `a=x-ssrc-range` attribute.

The `a=x-ssrc-range` attribute for an active media description MUST NOT change in a subsequent SDP offer or SDP answer.

This attribute SHOULD NOT be included in a media description which also contains ICE `a=candidate` attributes as defined in [IETF/DRAFT-ICENAT-06]. If the media description supports ICE as defined in [IETF/DRAFT-ICENAT-06], the `a=x-ssrc-range` attribute MUST be ignored by the receiving user agent.

#### 3.1.5.31.2 User agent behavior for a=x-ssrc-range attribute

When allocating an `m=audio` or `m=video` media stream, a user agent SHOULD allocate an appropriate SSRC range.

If a media description in a received SDP message contains an `a=x-ssrc-range` attribute, the receiving user agent SHOULD configure it's receive stream to expect SSRC values in the range declared by the peer.
If the user agent is an MCU, the SSRC range allocated for a send stream of the media channel SHOULD NOT overlap the SSRC range allocated by the MCU for any other media channel within the same conference. Furthermore, the SSRC ranges allocated by an MCU SHOULD NOT overlap any MSI values it allocates within the conference.

The size of an SSRC range depends on the media type. A size of one (for example, a=x-ssrc-range:1-1) SHOULD be used for an m=audio media description. A range size of 100 (for example, a=x-ssrc-range:101-200) SHOULD be used for an m=video media description.

3.1.5.32 Extensions for Media Source ID (MSI) assignment

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer MSI. An MSI represents a contributing source (CSRC) and replaces the use of an SSRC value in a CSRC list. An MSI is allocated for a media stream by an MCU and given to a conference client using an a=x-source-streamid attribute. For additional information about MSI, refer to [MS-RTP] section 2.2.10.

3.1.5.32.1 a=x-source-streamid attribute

The a=x-source-streamid attribute is a declarative media-level attribute which assigns a MSI to a media stream.

The syntax of the attribute is:

"a=x-source-streamid:" media-source-id

media-source-id = integer

The ABNF term integer is as defined in [RFC4566].

The value of media-source-id MUST be greater than or equal to one and less than or equal to 4294967040.

The media-source-id value given by the a=x-source-streamid attribute in a media description MUST NOT duplicate the media-source-id value defined for any other active media description located above it in the same SDP message. That is, all active media channels in the SDP message with an a=x-source-streamid attribute MUST have unique media-source-id values.

The a=x-source-streamid attribute does not apply to the m=applicationsharing media type. An m=applicationsharing media description SHOULD NOT contain a a=x-source-streamid attribute.

The a=x-source-streamid attribute for an active media description MUST NOT change in a subsequent SDP offer or SDP answer.

This attribute SHOULD NOT be included in a media description which also contains ICE a=candidate attributes as defined in [IETF-DRAFT-ICENAT-06]. If the media description supports ICE as defined in [IETF-DRAFT-ICENAT-06], the a=x-source-streamid attribute MUST be ignored by the receiving user agent.

3.1.5.32.2 User agent behavior for a=x-source-streamid attribute

When allocating an m=audio or m=video media stream, a MCU user agent SHOULD allocate an appropriate MSI and provide the MSI of the media stream to the client using the a=x-source-streamid attribute. The MSI value allocated by the MCU MUST be unique within the conference.

An MCU user agent SHOULD ignore a a=x-source-streamid attribute in an SDP message received from a conference participant.
3.1.5.33 Extensions for media source labeling

This section specifies an SDP extension to allow a user agent to declare in an SDP offer or SDP answer a descriptive name for a media source. If given to an MCU, this media source name, along with other status information about the media stream, can be communicated by the MCU to other participants within the conference, to be displayed within their user interface.

3.1.5.33.1 a=x-source attribute

The a=x-source attribute is a declarative media-level attribute that assigns a descriptive name to a media stream.

The syntax of the attribute is:

```
"a=x-source:" media-source-name

media-source-name = text
```

The ABNF term text is as defined in [RFC4566].

The media-source-name value given by the a=x-source attribute in a media description SHOULD NOT duplicate the media-source-name value defined for any other active media description located above it in the same SDP message. That is, all active media channels in the SDP message with an a=x-source attribute SHOULD have unique media-source-name values.

The length of the media-source-name value SHOULD NOT exceed 128 characters.

The a=x-source attribute does not apply to the m=applicationsharing media type. An m=applicationsharing media description SHOULD NOT contain an a=x-source attribute.

This attribute SHOULD NOT be included in a media description which also contains ICE a=candidate attributes as defined in [IETF-DRAFT-ICENAT-06]. If the media description supports ICE as defined in [IETF-DRAFT-ICENAT-06], the a=x-source attribute MUST be ignored by the receiving user agent.

3.1.5.33.2 User agent behavior of a=x-source attribute

A user agent SHOULD include an a=x-source attribute in an m=audio or m=video media description, if media from an attached media source device might be sent on the media stream. For example, if the media stream will be sending media from an audio input device or video camera, an a=x-source attribute can give a descriptive name for the media source, such as "main camera". The a=x-source attribute for an active media description SHOULD NOT be removed in a subsequent SDP offer or SDP answer, even if the media source device is currently paused.

The presence of the a=x-source attribute also indicates that status information about the media stream SHOULD be published to other participants within the conference.

An MCU user agent SHOULD NOT include the a=x-source attribute in its media descriptions.

3.1.5.34 Extensions for multiplexed media channels

This section describes an SDP extension to negotiate multiplexed media streams.

In terms on SDP negotiation, the multiplexed media streams all share the same set of transport addresses (as well as other attributes). This section describes how a set of media descriptions within an SDP message indicate they are to be multiplexed, and what requirements MUST be met.<61>.

3.1.5.34.1 Indicating multiplexed media channels in an SDP message
A basic requirement is that all multiplexed media streams MUST support ICE as specified in [IETFDR-ICENAT-19].

A set of media descriptions indicate their media streams are to be multiplexed by meeting the following requirements:

1. The media types, as specified by the m= field, MUST be equal. Multiplexing media streams of different media types is not supported.

2. The connection addresses, as specified by the c= field, MUST be equal.

3. The RTP port values, as specified by the m= field, MUST be equal.

4. The RTCP port values, as either specified by the a=rtcp attribute or inferred by the RTP port value, MUST be equal.

5. The transport protocols, as specified by the m= field, MUST be equal.

6. The ICE a=ice-ufrag attributes MUST be equal.

7. The ICE a=ice-pwd attributes MUST be equal.

8. All the media descriptions in the multiplexed set, except the first one, MUST NOT contain any a=candidate, a=x-candidate-ipv6 or a=remote-candidates attributes. The first media description in the set MUST specify a=candidate/a=x-candidate-ipv6 attributes for ICE (and the a=remote-candidates attribute, if ICE has completed).

9. A valid a=x-ssrc-range attribute MUST be given. The SSRC range MUST NOT overlap the SSRC range of any other media description within the SDP message.

10. An a=label attribute MUST be present and all the media descriptions in the multiplexed set MUST specify the same label value.

### 3.1.5.34.2 User agent behavior for negotiating multiplexed media channels

If a user agent wishes to include multiplexed media streams in an SDP offer, it MUST take care in how it forms the offer. The peer user agent might not be able to parse the multiplexed media descriptions and reject the entire offer.

To interoperate with the broadest set of peer user agents, the offering user agent SHOULD construct a MIME structure containing multiple SDP content parts for the SIP INVITE request body, as described in [MS-SIPRE] section 3.15.4.1, with one of the SDP content parts omitting the multiplexed media streams. An SDP part containing the multiplexed media streams SHOULD be placed as the last part in the multi-part MIME structure.

If a set of media streams are multiplexed in an SDP offer, the corresponding media streams in the SDP answer (not including those rejected by the answerer) MUST also be multiplexed. A user agent that does support multiplexing does not have to accept all the multiplexed media streams in an SDP offer. For example, if the SDP offer includes seven multiplexed "main-video" media descriptions, but the receiving user agent supports at most five such "main-video" multiplexed streams, it SHOULDN'T accept the first five "main-video" media descriptions in the offer and reject the remaining.

### 3.1.5.35 Extensions for multi-channel main-video modality negotiation

This section describes an SDP extension to negotiate a "main-video" modality consisting of multiple channels. A conference hosted by an audio/video MCU might be provisioned to support a "main-video" modality consisting of multiple channels<63>. This would enable a conference participant to simultaneously receive the video sources of multiple other participants, while also sourcing its own video into the conference.
3.1.5.35.1 Requirements to negotiate a multi-channel main-video modality

To negotiate a multi-channel "main-video" modality, the SDP offer and SDP answer MUST contain a set of m=video media descriptions meeting the following requirements:

1. The value of the a=label attributes MUST be "main-video".

2. The media streams MUST be multiplexed according to the rules for media stream multiplexing, as described in section 3.1.5.34.1.

3. All media descriptions MUST specify an a=rtcp-rsize attribute.

4. All media descriptions MUST specify an a=rtcp-fb attribute which declares send and receive support for Picture Loss Indicator and Video Source Request capabilities. For example:
   
   a=rtcp-fb:* x-message app send:x-pli,src recv:x-pli,src

5. The size of the SSRC range, given by the a=x-ssrc-range attribute, SHOULD be 100.

In addition, the media descriptions generated by the MCU user agent MUST contain an a=x-source-streamid attribute.

If a conference participant user agent has a video source device (for example, web camera) associated with one of the media streams and will be sending video to the conference, its corresponding media description SHOULD include an a=x-source attribute. If the media description from the participant does not contain a=x-source, it SHOULD include an a=recvonly stream direction attribute to indicate that the participant intends to use the media stream only to receive video from the conference.

3.1.5.36 Extensions for transport address or ICE candidate attributes

This section describes an SDP extension to allow a user agent to declare in an SDP offer or SDP answer additional information about a particular transport address or ICE candidate. In particular, this specification describes an extension to declare that an ICE candidate is allocated on a wireless LAN or wireless WAN network interface. This can be used for diagnostic purposes, or might be useful to the receiving user agent for other media-processing purposes. This information is declared using an x-candidate-info attribute.<64>

3.1.5.36.1 a=x-candidate-info attribute

The a=x-candidate-info attribute is a declarative media-level attribute to indicate that an ICE candidate is allocated on a wireless LAN or wireless WAN network interface. The syntax of the attribute allows for future extensions.

The syntax of the attribute is:

"a=x-candidate-info:" transport-id SPACE transport-parameters
transport-id = "*" / foundation
foundation = 1..32*ice-char
transport-parameters = transport-parameter 0*(SPACE transport-parameter)
transport-parameter = "network-type=WLAN"
   / "network-type=WWAN"
   / [transport-parameter-name "="] transport-parameter-value
transport-parameter-name = ALPHA 0*(ALPHA / DIGIT / ":" / "")
transport-parameter-value = token
The **ABNF** term token is defined in [RFC4566]. The ABNF term ice-char is defined in [IETF-DRAFT-ICENAT-19].

An **a=x-candidate-info** attribute that conforms to this syntax but begins with "*" SHOULD be ignored.

An **a=x-candidate-info** attribute with a **transport-id** value which does not match the foundation value of an ICE **a=candidate** attribute within the same media description MUST be ignored. There MUST NOT be more than one **a=x-candidate-info** attribute with the same foundation value within the same media description.

Transport parameters other than "network-type=WLAN" and "network-type=WWAN" SHOULD be ignored.

Parsing of transport parameters, including "network-type=WLAN" and "network-type=WWAN" MUST be case-insensitive. Therefore, "network-type=WLAN" and "network-type=wlan" are equivalent.

An **a=x-candidate-info** attribute MUST NOT specify both "network-type=WLAN" and "network-type=WWAN" transport parameters.

### 3.1.5.36.2 User agent behavior for a=x-candidate-info attribute

If the transport address associated with an ICE candidate is allocated on a wireless LAN or wireless WAN network interface, the **user agent** SHOULD include an **a=x-candidate-info** attribute containing "network-type=WLAN" or "network-type=WWAN", respectively, in the **SDP** media description.

### 3.1.5.37 Additional requirement for labeling a panoramic-video modality

This section describes an **SDP** extension to allow a **user agent** to declare in an **SDP** offer or **SDP** answer that an **m=video** **SDP** media description represents a panoramic-video modality.

#### 3.1.5.37.1 a=x-sourceid attribute

The **a=x-sourceid** attribute is a declarative media-level attribute that assigns a descriptive media source identifier to a media **stream**.

The syntax of the attribute is:

```
"a=x-sourceid:" media-source-identifier
media-source-identifier = "PanoramicCamera" / text
```

The **ABNF** term text is as defined in [RFC4566].

The **a=x-sourceid** attribute does not apply to the **m=audio** or **m=applicationsharing** media types. An **m=audio** or **m=applicationsharing** media description SHOULD NOT contain an **a=x-sourceid** attribute.

The value of the **media-source-identifier** is case-sensitive. Therefore, **a=x-sourceid:PanoramicCamera** is not equivalent to **a=x-sourceid:panoramiccamera**.

#### 3.1.5.37.2 User agent behavior for panoramic-video modality

For an **m=video** **SDP** media description which represent a panoramic-video modality, the **user agent** MUST include an **a=x-sourceid:PanoramicCamera** attribute, and SHOULD also include an **a=label:panoramic-video** attribute.
3.1.5.38 Support for multiplexing RTP and RTCP ports with ICE

A user agent SHOULD <66> support negotiation of multiplexed RTP and RTCP ports as described in [RFC5761] using the a=rtcp-mux media attribute in SDP offers and SDP answers.

A media stream which negotiates RTP/RTCP multiplexing MUST support ICE as specified in [IETF-DRAFT-ICENAT-19]. If RTP/RTCP multiplexing is negotiated for a media stream, the a=remote-candidates attribute MUST include both RTP and RTCP components.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.
4 Protocol Examples

4.1 Generic Examples

4.1.1 Client Makes an Offer using ICE as described in IETF DRAFT-ICENAT-06

Following are some SDP examples that demonstrate the offer with most of the extensions specified in this protocol.

The following example is an offer sent by a client.

```
v=0
o=- 0 0 IN IP4 10.56.65.184
c=session
s=session
i=IN IP4 10.56.65.184
b=CT:99980
m=audio 37632 RTP/AVP 114 9 111 112 115 116 8 0 97101
a=candidate:ir84fUlcDqYH50bs2M/Xn/pDNE+fyxRTHBWG33PM8 1 lvvq9h3j8ixi3npD0X9VA UDP 0.830 10.56.65.184 37632
a=candidate:ir84fUlcDqYH50bs2M/Xn/pDNE+fyxRTHBWG33PM8 2 lvvq9h3j8ixi3npD0X9VA UDP 0.830 10.56.65.184 63616
a=candidate:Mbmhbdy6gJ1nwkKtcJJa8h9L1pQ90UT/E1BDOvBBP4 1 76CTu2GxyKtntYlu22zdjXA TCP 0.190 172.29.105.45 50663
a=candidate:Mbmhbdy6gJ1nwkKtcJJa8h9L1pQ90UT/E1BDOvBBP4 2 76CTu2GxyKtntYlu22zdjXA TCP 0.190 172.29.105.45 50663
a=candidate:L6SpclrY2GemmgDgON7eqYMvNO/jJ3nH6ttRoU0VE 1 1AJO4UBlONZgYNUCoYl9TQ UDP 0.490 172.29.105.45 50403
a=candidate:L6SpclrY2GemmgDgON7eqYMvNO/jJ3nH6ttRoU0VE 2 1AJO4UBlONZgYNUCoYl9TQ UDP 0.490 172.29.105.45 50403
a=candidate:sct7Qs0hpryFGR/K94UBuz0ONWuTcD7a1iTjyLF8Q 1 ozhWuY0lM3w83GTHGuOiW TCP 0.250 10.56.65.184 16512
a=candidate:sct7Qs0hpryFGR/K94UBuz0ONWuTcD7a1iTjyLF8Q 2 ozhWuY0lM3w83GTHGuOiW TCP 0.250 10.56.65.184 16512
crypto=scale:1 client AES_CM_128_HMAC_SHA1_80 inline:SSSmQW0gZ9N256pxTRhFIRxjUp9q1ISxwaibloc2^31:1:1
crypto=2 AES_CM_128_HMAC_SHA1_80 inline:t2047Tyj1NDG6H+gNNPizAzRPfYeQg8p+ukw0y^2^31:1:1
a=maxptime:200
a=rtpmap:63616
a=rtpmap:114 x-msrta/16000
a=fmtp:114 bitrate=29000
a=rtpmap:9 G722/8000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:112 G722/16000
a=rtpmap:112 G722/16000
a=rtpmap:112 G722/16000
a=rtpmap:112 G722/16000
a=rtpmap:115 x-msrta/8000
a=rtpmap:115 x-msrta/8000
a=rtpmap:115 x-msrta/8000
a=rtpmap:115 x-msrta/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:18 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:97 RED/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
m=video 24832 RTP/AVP 121
a=candidate:kr94HvYUEeMOGCz7TvUsBoBojVMo/V+fSSbYUvz2MFCxg 1 VzH+zfgjCGjhGFE9aa6ujg UDP 0.840 10.56.65.184 24832
a=candidate:kr94HvYUEeMOGCz7TvUsBoBojVMo/V+fSSbYUvz2MFCxg 2 VzH+zfgjCGjhGFE9aa6ujg UDP 0.840 10.56.65.184 39552
a=candidate:Sluz8sKaw20lFkZ8/m6UjK9HU/hYudqY3Xv4y1QcQ1 1 HX1SFd1yDyD0mg5F16wQ TCP 0.190 172.29.105.45 55585
a=candidate:Sluz8sKaw20lFkZ8/m6UjK9HU/hYudqY3Xv4y1QcQ1 2 HX1SFd1yDyD0mg5F16wQ TCP 0.190 172.29.105.45 55585
```
In the preceding example, the offerer is proposing audio and video as modalities. The offerer supports both SRTP and SSRTP as the mode for encryption, and proposes that in its SDP offer, using the **a=crypto** and **a=cryptoscale** attributes. The offerer also requests to only encrypt the media optionally. This is described by specifying "RTP/AVP" as the transport, even though there are **a=crypto** and **a=cryptoscale** attributes present in the SDP message.

Also note that the RTAudio and RTVideo codecs are represented in the codec using dynamic payloads of 114, 115, and 121 and are identified using their encoding names of "x-msrta" and "x-rtvc1" in their corresponding **a=rtpmap** attributes.

### 4.1.2 Client Receives Response with SSRTP to ICENAT-06 Offer

The following example is a response, or **SDP answer**, received for the preceding offer.

```plaintext
v=0
o=- 0 0 IN IP4 172.29.106.5
s=session
c=IN IP4 172.29.106.5
b=CT:1000
r=0 0
m=audio 57472 RTP/SAVP 9 111 8 0 97 101
a=rtcp:59648
a=candidate:vu6VFdaIZf91YO6DePy/FBzJopHopn11RD/v1USSJU00 bhmEv8fu4QTneu1MXu1iA UDP 0.900 172.29.106.5 57472
a=candidate:vu6VFdaIZf91YO6DePy/FBzJopHopn11RD/v1USSJU00 bhmEv8fu4QTneu1MXu1iA UDP 0.900 172.29.106.5 59648
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80 inline:sCkL4JFpu5JbaworoJYsXuPvDbpJLavV1L5JLoJE6|2^31|1:1
a=label:main-audio
a=rtpmap:9 G722/8000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:97 RED/8000
a=fmtp:97 red/8000
a=rtpmap:101 telephone-event/8000
a=ptime:60
m=video 58496 RTP/SAVP 121
a=IN IP4 172.29.106.5
a=rtcp:54656
a=candidate:HfCkQziV8VGEey2/VVPSm3m8b0otY/xZi1AoWGRo6BM 1 Szm146X7yW8pVabapBY/g UDP 0.900 172.29.106.5 58496
a=candidate:HfCkQziV8VGEey2/VVPSm3m8b0otY/xZi1AoWGRo6BM 2 Szm146X7yW8pVabapBY/g UDP 0.900 172.29.106.5 54656
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80 inline:sCkL4JFpu5JbaworoJYsXuPvDbpJLavV1L5JLoJE6|2^31|1:1
```
The answerer, or remote peer, also encrypts media using SRTP, and so it replies with an SDP answer that has "RTP/SAVP" in the transport in the m= line.

Also note that the remote peer prefers to do SSRTP, and thus returns only the a=cryptoscale attribute with the "server" value for the scale-sttp-flavor parameter. After this exchange of offer and answer, the call is set up and the media is encrypted using SSRTP.

### 4.1.3 Client Makes an Offer using ICE as described in IETF DRAFT-ICENAT-19

Following are some SDP examples that demonstrate the offer with most of the extensions specified in this document.

The following example is an offer sent by a client.

```xml
v=0
o=- 0 0 IN IP4 172.24.32.152
s=session
c=IN IP4 172.24.32.152
b=CT:99980
t=0 0
a=x=mediabw:main-video send=585;recv=1416
a=x=devicecaps:audio:send,recv;video:send,recv
m=audio 50005 RTP/AVP 117 114 9 111 112 115 116 8 0 97 13 118 101
a=rtpmap:117 G722/8000/2
a=fmtp:117 bitrate=128000
a=rtpmap:121 x-rtvc1/90000
a=fmtp:121 CIF=15;VGA=15;PANO=15
a=x-sourceid:MainCamera
```
In the previous example, the offerer is proposing audio and video as modalities. The offerer supports both SRTP and SSRTP as the mode for encryption, and proposes that in its SDP offer using the a=crypto and a=cryptoscale attributes. The offerer only encrypts the media optionally. This is described by specifying "RTP/AVP" as the transport, even though there are a=crypto and a=cryptoscale attributes present in the SDP message.

Also note that the RTAudio, G722-Stereo, RTVideo and H.264UC codecs are represented using dynamic payloads of 114, 115, 117, 121, and 122, and are identified using their encoding names of "x-msrta", "G722", "x-rtvc1" and "X-H264UC" in their corresponding a=rtpmap attributes. The full media format name for G722-Stereo is "G722/8000/2".

The ULPFEC-UC video FEC payload format is also included in the m=video media description, using dynamic payload type 123.
4.1.4 Client Receives Response with SSRTP to ICENAT-19 Offer

The following example is a response, or SDP answer, received for the preceding offer.

```plaintext
v=0
o=- 0 0 IN IP4 172.24.32.125
s=session
c-IN IP4 172.24.32.125
b=CT:99980
t=0 0
a=x-mediabw:main-video send=585;recv=1416
a=x-devicecaps:audio:send,recv;video:send,recv
m=audio 50018 RTP/SAVP 117 114 0 111 112 115 116 8 0 97 13 118 101
a=rtcp-fb:* x-message app send:dsh recv:dsh
a=rtcp-raize
a=ice-ufrag:YmQ
a=ice-pwd:T6P5yKtikiFpupOOpQgGatje
a=candidate:1 1 UDP 2130706431 172.24.32.125 50018 typ host
a=candidate:1 2 UDP 2130705918 172.24.32.125 50007 typ host
a=label:main-audio
a=encryption:aescm128-hmacsha180
inline:E8zKbdM9s3qQenGWVb3yBp52rxFgS4wMNy/k|2^31|1:1
a=remote-candidates:1 172.24.32.152 50005 2 172.24.32.152 50009
a=maxptime:200
a=rtcp:50007
a=rtmpmap:117 G722/8000/2
a=fmt:117 bitrate=128000
a=rtmpmap:114 x-mrta/16000
a=fmt:114 bitrate=29000
a=rtmpmap:9 G722/8000
a=rtmpmap:111 SIREN/16000
a=fmt:111 bitrate=16000
a=rtmpmap:112 G7221/16000
a=fmt:112 bitrate=24000
a=rtmpmap:115 x-mrta/8000
a=fmt:115 bitrate=11800
a=rtmpmap:116 AAL2-G726-32/8000
a=rtmpmap:8 PCMA/8000
a=rtmpmap:0 PCMU/8000
a=rtmpmap:97 RED/8000
a=rtmpmap:13 CN/8000
a=rtmpmap:118 CN/16000
a=rtmpmap:101 telephone-event/8000
a=fmt:101 0-16
m=video 50002 RTP/SAVP 122 121 123
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtcp-raize
a=ice-ufrag: tTaJ
a=ice-pwd: 4jUTStp48gTR3iEvJiWVVDpG
a=x-caps:121
263:1920:1080:30.0:2000000:1;4359:1280:720:30.0:1500000:1;8455:640:480:30.0:600000:1;1255
1:640:360:30.0:600000:1;16647:352:288:15.0:250000:1;20743:424:240:15.0:250000:1;24839:176
1:144:15.0:180000:1
a=candidate:1 1 UDP 2130706431 172.24.32.125 50002 typ host
a=candidate:1 2 UDP 2130705918 172.24.32.125 50008 typ host
a=label:main-video
a=encryption:aescm128-hmacsha180
inline:E8zKbdM9s3qQenGWVb3yBp52rxFgS4wMNy/k|2^31|1:1
a=remote-candidates:1 172.24.32.152 50005 2 172.24.32.152 50009
a=rtcp:50008
a=x-ssrc-range:101-200
a=rtmpmap:122 X-M264UC/90000
a=fmt:122 packetization-mode=1;mst-mode=N1-TC
a=rtmpmap:121 x-rtvcl/90000
a=rtmpmap:123 x-ulpfecuc/90000
```
The answerer (remote peer) also encrypts the media using SRTP, so it replies with an SDP answer that has "RTP/SAVP" in the transport in the \texttt{m=} line.

### 4.2 Encryption Using SRTP Examples that Demonstrate Extensions

Following are some examples. For brevity, only the pertinent portions of the SDP are displayed.

The following example is an application optionally encrypting the media using either SRTP or \texttt{Client Scale-SRTP}.

\begin{verbatim}
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3esXk07A174T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}

The following example is an application optionally encrypting the media using either SRTP or \texttt{Server SSRTP}.

\begin{verbatim}
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3esXk07A174T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}

The following example is an application optionally encrypting the media using only SRTP.

\begin{verbatim}
m=audio 50004 RTP/AVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}

The following example is an application compulsorily encrypting the media using either SRTP or \texttt{Client Scale-SRTP}.

\begin{verbatim}
m=audio 50004 RTP/SAVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3esXk07A174T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}

The following example is an application compulsorily encrypting the media using either SRTP or \texttt{Server SSRTP}.

\begin{verbatim}
m=audio 50004 RTP/SAVP 8 97 101
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3esXk07A174T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}

The following example is an application compulsorily encrypting the media using only SRTP.

\begin{verbatim}
m=audio 50004 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Oi0nVM8eJE2bkLVNeRaqtUeqjXwGXX0s0IrmoKh|2^31|1:1
\end{verbatim}
4.3 Offer/Answer Exchange for Various SRTP Encryption Scenarios

The following subsections contain examples. Only the relevant portion of the SDP message is included.

4.3.1 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer With SRTP or Client Scale-SRTP Encryption Optionally

4.3.1.1 Offer

The following example is an offer from an offerer with SRTP or Client Scale-SRTP encryption optionally.

```
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3xXt07AI74TJ3Ji2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:O10nVM8eJZ2bkLVNeRaqtUeqjXwGMXo0sOIrmoKhi2^31|1:1
```

4.3.1.2 Answer

The following example is an answer to the offer in the previous section. This answerer supports SRTP or Client Scale-SRTP encryption optionally.

```
m=audio 50004 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:z8aIuyfeJZ2bkLVNPadciqjXwGMXo0sOImrZr|2^31|1:1
```

4.3.1.3 Noteworthy points

Following are noteworthy points regarding the situation in which the offerer has SRTP or Client Scale-SRTP encryption optionally and the answerer supports SRTP or Client Scale-SRTP encryption optionally, as shown in the previous sections.

- The answerer supported only SRTP or Client Scale-SRTP. Thus, it responds only to the a=crypto line of the offer. In this case, the offerer and answerer can only support the same flavor of the SSRTP, and SSRTP cannot be used.
- The answerer uses the same tag value for his a=crypto attribute to signify that it is in response to the a=crypto attribute with the same tag value in the offer.
- The answerer changes the transport profile from "AVP" to "SAVP" because both the offerer and answerer have negotiated SRTP for doing encryption.

4.3.2 Offerer With SRTP or Client Scale-SRTP Optionally and Answerer With SRTP or Server SSRTP Encryption Optionally

4.3.2.1 Offer

The following example is an offer from an offerer with SRTP or Client Scale-SRTP encryption optionally.

```
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrvm9u07pd0QvyHw7rf6yL8e3xXt07AI74TJ3Ji2^31|1:1
```
4.3.2.2 Answer

The following example is an answer to the offer in the previous section. This answerer supports **SRTP** or **Server SSRTTP** encryption optionally.

```
m=audio 50004 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:z8aIuyfeJZ2bkLVNPeRaqtUeqjXwGMXo0s0IrmoKh|2^31|1:1
```

4.3.2.3 Noteworthy points

Following are noteworthy points regarding the situation in which the offerer has **SRTP** or **Client Scale-SRTP** encryption optionally and the answerer supports SRTP or **Server SSRTTP** encryption optionally, as shown in the previous sections.

- The answerer supported only SRTP or Server SSRTTP, and thus responds only to the **a=cryptoscale** line of the offer. In this case, the offerer and answerer can support the different types of **SSRTTP**, and SSRTTP can be used.

- The answerer uses the same tag value for his **a=cryptoscale** attribute to signify that it is in response to the **a=cryptoscale** attribute with the same tag value in the offer.

- The answerer changes the transport profile from "AVP" to "SAVP" because both the offerer and answerer have negotiated SSRTTP for doing encryption.

4.3.3 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer With SRTP Optionally

4.3.3.1 Offer

The following example is an offer from an offerer with **SRTP** or **Client Scale-SRTP** encryption optionally.

```
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pd0QvyHw7rf6yL8e3Xt07A774T3J|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:O10nVM8eJZ2bkLVNPeRaqtUeqjXwGMXo0s0IrmoKh|2^31|1:1
```

4.3.3.2 Answer

The following example is an answer to the offer in the previous section. This answerer supports **SRTP** encryption optionally.

```
m=audio 50004 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:z8aIuyfeJZ2bkLVNPeRaqtUeqjXwGMXo0s0IrmoZh|2^31|1:1
```
4.3.3.3 Noteworthy points

Following are noteworthy points regarding the situation in which the offerer has **SRTP** or **Client Scale-SRTP** encryption optionally and the answerer supports SRTP encryption optionally, as shown in the previous sections.

- The answerer supported only SRTP, and thus responds only to the `a=crypto` line of the offer.
- The answerer uses the same tag value for his `a=crypto` attribute to signify that it is in response to the `a=crypto` attribute with the same tag value in the offer.
- The answerer changes the transport profile from "AVP" to "SAVP" because both the offerer and answerer have negotiated SRTP for doing encryption.

4.3.4 Offerer With SRTP or Client Scale-SRTP Encryption Optionally and Answerer Cannot Support SRTP or SSRTP Encryption

4.3.4.1 Offer

The following example is an offer from an offerer with **SRTP** or **Client Scale-SRTP** encryption optionally.

```
m=audio 50004 RTP/AVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pdQvyHw7rf6yL8e3XtxT07A74T3j|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:O10nVM8eJZ2bkLVEsRaqtUeqjXwGMXo0s0IrmoKh|2^31|1:1
```

4.3.4.2 Answer

The following example is an answer to the offer in the previous section. This answerer cannot support **SRTP** or **SSRTP** encryption.

```
m=audio 50004 RTP/AVP 8 97 101
```

4.3.4.3 Noteworthy points:

The answerer cannot support **SRTP** or **SSRTP** and does not respond with any `crypto` or `cryptoscale` attributes.

4.3.5 Offerer With SRTP or Client Scale-SRTP Encryption Compulsorily and Answerer With SRTP Encryption Optionally

4.3.5.1 Offer

The following example is an offer from an offerer with **SRTP** or **Client Scale-SRTP** encryption compulsorily.

```
m=audio 50004 RTP/SAVP 8 97 101
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:vV5wrmv9u07pdQvyHw7rf6yL8e3XtxT07A74T3j|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:010nVM8eJZ2bkLVEsRaqtUeqjXwGMXo0s0IrmoKh|2^31|1:1
```
4.3.5.2 Answer

The following example is an answer to the offer in the previous section. This answerer supports SRTP encryption optionally.

m=audio 50004 RTP/SAVP 8 97 101
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:z8aIuyfeJZ2bkLVNPadicqjXwGXM0s0TomrZr|2^31|1:1

4.3.5.3 Noteworthy points

Following are noteworthy points regarding the situation in which the offerer has SRTP or Client Scale-SRT encryption compulsorily and the answerer supports SRTP encryption optionally, as shown in the previous sections.

- The Offerer encrypts compulsorily using SRTP or SSRTP, and thus sets the transport profile to "SAVP".
- The answerer supports only SRTP, and thus responds only to the a=crypto line of the offer.
- The answerer uses the same tag value for the a=crypto attribute to signify that it is in response to the a=crypto attribute with the same tag value in the offer.

4.4 Restriction to the name and sampling rate for wide band comfort noise

Following is an example of an offer with support for comfort noise.

m=audio 57472 RTP/AVP 118 8 0 97 101
c=IN IP4172.29.106.5
a=rtpmap:118 CN/16000

4.5 Offer/Answer Exchange for application sharing

4.5.1 Offer

In the following example, the offerer proposes application sharing as a modality in the role of a viewer.

m=applicationsharing 25865 TCP/RTP/SAVP 127
a=ice-ufrag:YVBHg
a=ice-pwd:ttstbfut41Em7/nM7qBatyKEV
a=candidate:1 1 TCP-PASS 2120613887 157.56.65.134 7967 typ host
a=candidate:2 1 TCP-PASS 2120613394 157.56.65.134 7967 typ host
a=candidate:2 2 TCP-ACT 2121006591 157.56.65.134 25865 typ host
a=candidate:3 1 TCP-PASS 6556158 172.29.105.171 57506 typ relay raddr 172.29.105.171
rport 57506
a=candidate:3 2 TCP-PASS 6556158 172.29.105.171 57506 typ relay raddr 172.29.105.171
rport 57506
a=candidate:4 1 TCP-PASS 7076607 172.29.105.171 57506 typ relay raddr 172.29.105.171
rport 57506
a=candidate:4 2 TCP-PASS 7076094 172.29.105.171 57506 typ relay raddr 172.29.105.171 rport 57506
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:qJxtX8+/VEpKg1TEgQf84Hzq7umuaFL3y+fA|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:hhVTXcOoDOoJa5joyG5vOmmn+Djx7E6Hd01Y0Avkt|2^31|1:1
a=setup:passive
a=connection:new
4.5.2 Answer

The answerer accepts the offer in the previous section in the role of a sharer.

```
m=applicationsharing 53076 TCP/RTP/SAVP 127
c=IN IP4 172.29.105.171
a=rtpmap:127 x-data/90000
a=mid:1
a=connection:new
a=setup:active
a=rtpc:53076
a=ice-ufrag:A0nvw
a=ice-pwd:dp7UG//SD5FPVC7kD4SanBb1ysHaL
a=candidate:1 1 tcp-pass 2120613887 172.29.105.158 57857 typ host raddr 172.29.105.158 rport 57857
a=candidate:1 2 tcp-pass 2120613374 172.29.105.158 57857 typ host raddr 172.29.105.158 rport 57857
a=candidate:2 1 tcp-act 2121006591 172.29.105.158 55959 typ host raddr 172.29.105.158 rport 55959
a=candidate:2 2 tcp-act 2121006078 172.29.105.158 55959 typ host raddr 172.29.105.158 rport 55959
a=candidate:3 1 tcp-pass 6555135 172.29.105.171 53076 typ relay raddr 172.29.105.171 rport 53076
a=candidate:3 2 tcp-pass 6555134 172.29.105.171 53076 typ relay raddr 172.29.105.171 rport 53076
a=candidate:4 1 tcp-act 7076607 172.29.105.171 53076 typ relay raddr 172.29.105.171 rport 53076
a=candidate:4 2 tcp-act 7076094 172.29.105.171 53076 typ relay raddr 172.29.105.171 rport 53076
a=crypto:2 AES_CM_128_HMAC_SHA1_80
``` inline:WgJ76m2+jmIICUHA4wWyrpVJJBoMlgGDuY+1Jz5R|2^31|1:1
a=label:applicationsharing
a=x-applicationsharing-session-id:1
a=x-applicationsharing-role:viewer
a=x-applicationsharing-media-type:rdp
a=x-applicationsharing-contentflow:recvonly

4.5.3 Noteworthy points

Following are noteworthy points regarding the situation in which the offerer proposes application sharing as a modality in the role of a viewer and the answerer accepts the offer in the role of a sharer, as shown in the previous sections.

- The offerer has a role of a viewer, while the answerer has a role of a sharer.
- The offerer encrypts compulsorily using SRTP, and thus sets the transport profile to "SAVP". SSRTP is not used.
- The answerer supports only SRTP, and thus responds only to the a=crypto line of the offer.
- The answerer uses the same tag value for the a=crypto attribute to signify that it is in response to the a=crypto attribute with the same tag value in the offer.
- RTP is used over the protocol described in [MS-ICE2] using TCP.
4.6 Offer/Answer Exchange with optimized media path to a gateway

This section describes examples of inbound and outbound calls between the client and a gateway with the media path bypassing OCS.

4.6.1 Incoming call from gateway to client

Note: There is a CONTENT-ID MIME header associated with each application/sdp and application/gw-sdp that are part of the multipart/alternative offer. In the following example, the application/GW-SDP offered to the client indicates that the gateway does not amplify media and its bypass id is "9CD08A01-E998-456a-AC8A-D028930E5933."

```
Content-Type: application/sdp
Content-ID: <f5806c1e-a58b-492f-a274-27e84ea28920>
Content-Disposition: Session;handling=optional;ms-proxy=2007fallback
v=0
o-- 5 0 IN IP4 192.168.104.102
s=session
c=IN IP4 192.168.104.102
b=CT:1000000

m=audio 56868 RTP/AVP 0 8 115 118 97 101
a=rtcp:56869
a=candidate:E3q9M8OJWFaigFVFtD0+u6FqPp0nkHYGaePLQMBTJrc 1 HYl1MeZU7h7p4AUd06Xncw UDP 0.830 192.168.104.102 56868
a=candidate:E3q9M8OJWFaigFVFtD0+u6FqPp0nkHYGaePLQMBTJrc 2 HYl1MeZU7h7p4AUd06Xncw UDP 0.830 192.168.104.102 56869

m=audio 51390 RTP/AVP 0 8
```

[MS-SDPEXT] - v20190618
Session Description Protocol (SDP) Version 2.0 Extensions
Copyright © 2019 Microsoft Corporation
Release: June 18, 2019
The following code is the answer from the OC, assuming it is in the same location as the gateway and has selected the gateway SDP.
4.6.2 Outbound call from client to gateway

In the following example, the offer from the client indicates that its bypass identifier is "9CD08A01-E998-456a-AC8A-D028930E5933".

------=_NextPart_000_0754_01CAA68D.A421F990
Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: <b36a0b797c2d448684b4cd828213e687b>
Content-Disposition: session; handling=optional; ms-proxy-200?fallback
v=0
o-- 0 0 IN IP4 192.168.40.165
c=IN IP4 192.168.40.165
b=CT:99980
t=0 0
m=audio 31984 RTP/AVP 114 9 112 111 0 8 116 115 97 13 118 101
a=crypto:1 AES_CM_128_HMAC_SHA1_80 inline:8XdWiybvpW9FAj77tdedc6qWmJHCKr7gCvq0q56ek|2^31|1:1
a=maxptime:200
a=rtpmap:114 x-mrta/16000
a=rtpmap:114 bitrate=29000
a=rtpmap:114 114 112 111 0 8 116 115 97 13 118 101
a=rtpmap:114 114 112 111 0 8 116 115 97 13 118 101
a=rtpmap:2 G722/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:101 telephone-event/8000
a=maxptime:200
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:114 SIREN/16000
a=fmtp:114 bitrate=16000
a=rtpmap:112 114 112 111 0 8 116 115 97 13 118 101
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:nYToZWyhCoDcl/CQLFTE4bTj1Cv8Yq0nfvFGCvV/2^31
a=maxptime:200
a=rtpmap:114 x-mrta/16000
a=rtpmap:114 bitrate=29000
a=rtpmap:9 G722/8000
a=fmtp:9 bitrate=64000
a=rtpmap:9 G722/16000
a=fmtp:9 bitrate=24000
a=rtpmap:9 G722/16000
a=fmtp:9 bitrate=16000
a=rtpmap:9 G722/16000
v=0
o-- 0 0 IN IP4 192.168.40.165
s=session
c=IN IP4 192.168.40.165
b=CT:99980
m=audio 13510 RTP/AVP 114 9 112 111 0 8 116 115 97 13 118 101
a=ice-ufrag:oTw+
a=ice-pwd:J7jponEfEPTn6YX81beaImJh
a=candidate:1 1 UDP 2130706431 192.168.40.165 13510 typ host
a=candidate:1 2 UDP 2130705918 192.168.40.165 13511 typ host
a=candidate:2 1 TCP-PASS 6556159 10.9.66.105 56378 typ relay raddr 192.168.40.165 rport 12134
a=candidate:2 2 TCP-PASS 6556158 10.9.66.105 56378 typ relay raddr 192.168.40.165 rport 12134
a=candidate:3 1 UDP 16648703 10.9.66.105 58427 typ relay raddr 192.168.40.165 rport 17214
a=candidate:3 2 UDP 16648702 10.9.66.105 52415 typ relay raddr 192.168.40.165 rport 17215
a=candidate:4 1 TCP-ACT 7076863 10.9.66.105 56378 typ relay raddr 192.168.40.165 rport 12134
a=candidate:4 2 TCP-ACT 7076430 10.9.66.105 56378 typ relay raddr 192.168.40.165 rport 12134
a=candidate:5 1 TCP-ACT 1684797951 192.168.40.165 12134 typ srflx raddr 192.168.40.165 rport 12134
a=candidate:5 2 TCP-ACT 1684797438 192.168.40.165 12134 typ srflx raddr 192.168.40.165 rport 12134
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:8XdWiybvpW9FAj7ttDedcqhWjHCkr7gCVq0q56ek|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:38knJUaog532qFBRdrFTpccSCYhoawv8wWV9v|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:nYToZWyhoCdC1/CQLFTE4bTj1cV8YqD1nfF9CVv/|2^31
a=maxptime:200
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:115 x-mrta/8000
a=fmtp:115 bitrate=11800
a=rtpmap:97 RED/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=x-bypassid:9CD08A01-E998-456a-AC8A-D0289305933
-------_NextPart_000_0754_01CAA68D.A421F990-
The following example is the answer received by the OC, assuming the gateway is in the same location as the OC and has opted to bypass.

Ms=Accepted-Content-ID: <6d62e6a07ddd4ddbab5d9f6474f4175c>
Rseq: 1
v=0
c=FYTNgateway1 696126319 696126004 IN IP4 192.168.107.12
s=session
c=IN IP4 192.168.107.12
t=0 0
m=audio 6470 RTP/SAVP 0 101
a=rtcp:6471
a=x-bypass
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:SmMcMyWfj3BUyHlv2q7aky90FeHzcZ35Vg111sv|2^31|129:1
a=sendrecv
a=rtpmap:6471 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=ptime:20
a=x-mediasettings:signalboosununsupporte

4.7 Extensions for music-on-hold

Note that the following examples illustrate SDP only. They do not show sip.rendering in the SIP Contact header.

4.7.1 Offer specifying music-on-hold

m=audio 52033 RTP/SAVP 114 111 112 115 116 8 0 97 13 118 101
a=sendonly
a=feature:MoH

This offer includes a=sendonly and a=feature:MoH under the m=audio line, indicating that that audio channel is streaming music-on-hold.

4.7.2 Offer removing music-on-hold

m=audio 52033 RTP/SAVP 114 111 112 115 116 8 0 97 13 118 101
a=sendrecv

This offer has a=sendrecv and no a=feature:MoH, indicating that the audio session is no longer on hold, and is no longer streaming music-on-hold.

4.8 Offer/Answer Exchange for multi-channel main-video modality

This section shows an abbreviated SDP offer and SDP answer sample for multi-channel main-video modality negotiation. In this example, the offerer is a client user agent and the answerer is a user agent for a conference hosted by an audio/video MCU. The client has discovered through some other means that the MCU conference supports a multi-channel main-video modality supporting up to six main-video streams.

4.8.1 Offer from client

In the following SDP offer, the m=video lines are highlighted for convenience.
v=0
c=IN IP4 10.56.65.184
o=- 0 0 IN IP4 10.56.65.184
ct:CT:99980
t=0 0
a=x-credential:main-video send=3300;recv=5000
a=x-devicecaps:audio:send,recv;video:send,recv
m=audio 25520 RTP/SAVP 114 9 0 8 115 97 13 118 101
a=ssrc-range:1883723781-1883723781
a=rtp-fb:* x-message app send:dsh recv:dsh
a=rtp-cb
a=label:main-audio
a=x-source:main-video
a=ice-ufrag:624R
a=ice-pwd:HDoxxgbTb2KVdiqXdrs19NKJ
a=candidate:1 1 UDP 2130706431 10.56.65.184 25520 typ host
a=candidate:1 2 UDP 2130705918 10.56.65.184 25521 typ host
a=x-candidate-ipv6:2 1 UDP 2130705919 2001:DB8:1e:0:8d22:79a4d:cdae 5028 typ host
a=x-candidate-ipv6:2 2 UDP 2130705406 2001:DB8:1e:0:8d22:79a4d:cdae 5029 typ host
a=x-candidate:3 1 UDP 2130704895 192.168.2.192 28740 typ host
a=x-candidate:3 2 UDP 2130704382 192.168.2.192 28741 typ host
a=x-candidate-info:3 network-type=WLAN
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:Vv31lyUvH2YVzH1Qp5rVrB0Y1WyR9V8HPyc7VxM34b57HJm78
a=cryptoscale:2 AES_CM_128_HMAC_SHA1_80
inline:Vv31lyUvH2YVzH1Qp5rVrB0Y1WyR9V8HPyc7VxM34b57HJm78
a=cryptoscale:3 AES_CM_128_HMAC_SHA1_80
inline:Vv31lyUvH2YVzH1Qp5rVrB0Y1WyR9V8HPyc7VxM34b57HJm78
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883723782-1883723781
a=rtp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtp-cb
a=x-source:main-video
a=ice-ufrag:DTKC
a=ice-pwd:1IOLIp9EgfHHCu2LgWMNyKph
a=caps:121
a=candidate:1 1 UDP 2130706431 10.56.65.184 4460 typ host
a=candidate:1 2 UDP 2130705918 10.56.65.184 4461 typ host
a=x-candidate-ipv6:2 1 UDP 2130705919 2001:DB8:1e:0:8d22:79a4d:cdae 17678 typ host
a=x-candidate-ipv6:2 2 UDP 2130705406 2001:DB8:1e:0:8d22:79a4d:cdae 17679 typ host
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:PEmRn5zjYVqJ39WHJzSaOLWVcqYoXl9gViskWnt|2^31|1:1
a=mailto:KJaRn5zjYVqJ39WHJzSaOLWVcqYoXl9gViskWnt|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:gxO0W6cWzGzRx8uPCCZpFvisFgNRt2oP0uAvKn|2^31
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
a=recvonly
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883723882-1883723981
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtpc-rsize
a=label:main-video
a=ice-ufrag:DTKC
a=ice-pwd:1IOLIp9EgfHHCu2LgWMNyKph
a=x-caps:121
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:spID3MK56jXtoMroaq2NttPaqP2TDExcO27zFB|2^31|1:1
a=cyto:2 AES_CM_128_HMAC_SHA1_80
inline:ty0aWrM0dGKL79vjLonD0h0xeS1KKOMVEcX4HpFf|2^31|1:1
a=cyto:3 AES_CM_128_HMAC_SHA1_80
inline:EQCPyBm5+9cRvhCgrfCWLARoUinLxqNpS|2^31
a=recvonly
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883723982-1883724081
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtpc-rsize
a=label:main-video
a=ice-ufrag:DTKC
a=ice-pwd:1IOLIp9EgfHHCu2LgWMNyKph
a=x-caps:121
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:c9XI3nPgIwt6Zo/RQv0YWtcGhYxP+PNmInCofxCTV|2^31|1:1
a=cyto:2 AES_CM_128_HMAC_SHA1_80
inline:JhUFm1dcl7kx7iHtFn5//lmdTmqdc7p1sqRzo4yf|2^31|1:1
a=cyto:3 AES_CM_128_HMAC_SHA1_80
inline:EzjkOC7H4E3Pnj3phZ2N1Lth8FfJWmPtY1QwjtX|2^31
a=recvonly
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883724082-1883724181
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtpc-rsize
a=label:main-video
a=ice-ufrag:DTKC
a=ice-pwd:1IOLIp9EgfHHCu2LgWMNyKph
a=x-caps:121
263i:1920:1080:30.0:2000000:1;4359:1280:720:30.0:1500000:1;8455:640:480:30.0:600000:
1;12551:640:360:600000:1;16647:352:288:15.0:250000:1;20743:424:240:15.0:250000:
1;24839:176:144:15.0:180000:1
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:PhRsYd8L9AYgZ8E1XlTQ80HwQg3L3uo4Pz9L9ceC|2^31|1:1
a=cryptoscale:2 AES_CM_128_HMAC_SHA1_80
inline:s4ObHSZ4xLrgWsVxgY30BCGAG|2^31|1:1
a=cryptoscale:3 AES_CM_128_HMAC_SHA1_80
inline:SwGhiHG69u/7bCIc/c6VCevSoFBnw9nNsz4DCE|2^31
a=recvonly
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
a=fmtp:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:123 x-ulpfcuc/90000
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883724182-1883724281
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtcp-rsize
a=label:main-video
a=ice-ufrag:DTKC
a=ice-pwd:11OLip9EfHHCu2LgWNMyKph
a=x-caps:121
263i:1920:1080:30.0:2000000:1;4359:1280:720:30.0:1500000:1;8455:640:480:30.0:600000:
1;12551:640:360:600000:1;16647:352:288:15.0:250000:1;20743:424:240:15.0:250000:
1;24839:176:144:15.0:180000:1
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:QgZ6e1f4vImyzmuw8+vwXhF3aIXThEJeM23X/e6h|2^31|1:1
a=cryptoscale:2 AES_CM_128_HMAC_SHA1_80
inline:HWx/XLi8g70y0gYvWIFDF/zf4uHwhsauStEBnLD6|2^31|1:1
a=cryptoscale:3 AES_CM_128_HMAC_SHA1_80
inline:97UchPM75rlXUrSi1rgr05RF+HU3UYRV7T0/mBL|2^31
a=recvonly
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
a=fmtp:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:123 x-ulpfcuc/90000
m=video 4460 RTP/SAVP 121 122 123
a=x-ssrc-range:1883724282-1883724381
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtcp-rsize
a=label:main-video
a=ice-ufrag:DTKC
a=ice-pwd:11OLip9EfHHCu2LgWNMyKph
a=x-caps:121
263i:1920:1080:30.0:2000000:1;4359:1280:720:30.0:1500000:1;8455:640:480:30.0:600000:
1;12551:640:360:600000:1;16647:352:288:15.0:250000:1;20743:424:240:15.0:250000:
1;24839:176:144:15.0:180000:1
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:QgZ6e1f4vImyzmuw8+vwXhF3aIXThEJeM23X/e6h|2^31|1:1
a=cryptoscale:2 AES_CM_128_HMAC_SHA1_80
inline:HWx/XLi8g70y0gYvWIFDF/zf4uHwhsauStEBnLD6|2^31|1:1
a=cryptoscale:3 AES_CM_128_HMAC_SHA1_80
inline:rWRxIlm8P5UqLsimYFGM0vrRPq9pRIah8jxZmy4F|2^31
a=recvonly
a=rtpmap:121 x-rtvc1/90000
a=rtpmap:122 X-H264UC/90000
a=fmtp:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:123 x-ulpfcuc/90000
4.8.2 Answer from MCU

The following example is a response, or SDP answer, received for the preceding offer.

```
v=0
o=- 124 0 IN IP4 157.56.65.134
s=session
c=IN IP4 157.56.65.134
b=CT:4294967
a=mediabw:main-video send=585;recv=1416
m=audio 54262 RTP/SAVP 9 0 8 97 101 13 118
a=rtpcp-raise
a=rtp-cf:* x-message app send:dsh recv:dsh
a=x-ssrc-range:1000-1000
a=x-source-streamid:2000000
a=rtpcp:54263
a=ice-ufrag:71s4
a=ice-pwd:Dec85qLpoNfQ/nt+Hto/3pPc
a=candidate:1 1 UDP 2130706431 157.56.65.134 54262 typ host
a=candidate:1 2 UDP 2130705918 157.56.65.134 54263 typ host
a=candidate:2 1 UDP 2130705919 2001:DB8:1e:0:1d46:c7f2:b7ff:b968 56050 typ host
a=candidate:2 2 UDP 2130705406 2001:DB8:1e:0:1d46:c7f2:b7ff:b968 56051 typ host
a=label:main-audio
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:63ok2g1FXVufjbwPo+Z2s3Ut8ZTEDd8GLtqTJuMB|2^31|1:1
a=rtpmap:9 g722/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:97 RED/8000
a=rtpmap:101 telephone-event/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=ptime:20
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtpcp-raise
a=rtp-cf:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc-range:1001-1100
a=x-source-streamid:2002056
a=x-sourceid:MainCamera
a=rtpcp:62085
a=ice-ufrag:IGiI
a=ice-pwd:Lx7x2Ffiv72zcqt6gTdIzXWm
a=candidate:1 1 UDP 2130706431 157.56.65.134 62084 typ host
a=candidate:1 2 UDP 2130705918 157.56.65.134 62085 typ host
a=candidate:2 1 UDP 2130705919 2001:DB8:1e:0:1d46:c7f2:b7ff:b968 65356 typ host
a=candidate:2 2 UDP 2130705406 2001:DB8:1e:0:1d46:c7f2:b7ff:b968 65357 typ host
a=label:main-video
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UfGmYYpS/4qZe03a1A29oUvd3V5sWL+pQQdeFXRgJ|2^31|1:1
a=rtpmap:122 h264/90000
a=fmtp:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:121 rtvc1/90000
a=fmtp:121 CIF=15;PANO=15;VGA=15
a=x-cap=121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 ulpfecucc/90000
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtpcp-raise
a=rtp-cf:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc-range:1101-1200
a=x-source-streamid:2000768
a=x-sourceid:MainCamera
a=rtpcp:62085
a=ice-ufrag:IGiI
```
Session Description Protocol (SDP) Version 2.0 Extensions

Copyright © 2019 Microsoft Corporation

Release: June 18, 2019

a=ice-pwd:lx7x2f1v72zcqtn6gTdIzXWm
a=label:main=video
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UFgmYypS/4q2eo3s1A29oUvd3V5vWL+pQQdeFXRgJ2^31|1:1
a=sendonly
a=rtpmap:122 x-h264uc/90000
a=fmtp:122 CIF=15;PANO=15;VGA=15
a=caps:121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 x-uplfecuc/90000
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtcp-raise
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc:range:1201-1300
a=x-source:streamid:2001024
a=x-sourceid:MainCamera
a=rtcp:62085
a=ice-ufrag:IGiI
a=ice-pwd:lx7x2f1v72zcqtn6gTdIzXWm
a=label:main=video
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UFgmYypS/4q2eo3s1A29oUvd3V5vWL+pQQdeFXRgJ2^31|1:1
a=sendonly
a=rtpmap:122 x-h264uc/90000
a=fmtp:122 CIF=15;PANO=15;VGA=15
a=caps:121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 x-uplfecuc/90000
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtcp-raise
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc:range:1301-1400
a=x-source:streamid:2001280
a=x-sourceid:MainCamera
a=rtcp:62085
a=ice-ufrag:IGiI
a=ice-pwd:lx7x2f1v72zcqtn6gTdIzXWm
a=label:main=video
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UFgmYypS/4q2eo3s1A29oUvd3V5vWL+pQQdeFXRgJ2^31|1:1
a=sendonly
a=rtpmap:122 x-h264uc/90000
a=fmtp:122 CIF=15;PANO=15;VGA=15
a=caps:121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 x-uplfecuc/90000
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtcp-raise
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc:range:1401-1500
a=x-source:streamid:2001536
a=x-sourceid:MainCamera
a=rtcp:62085
a=ice-ufrag:IGiI
a=ice-pwd:lx7x2f1v72zcqtn6gTdIzXWm
a=label:main=video
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UFgmYYPs/EqZeo3s1A29oUvd3VsWL+pQQdeFXRgJ|2^31|1:1
a=sendonly
a=rtpmap:122 x-h264uc/90000
a=fmttype:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:121 x-rtvc1/90000
a=fmttype:121 CIF=15;PANO=15;VGA=15
a=x-caps:121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 x-ulpfecuc/90000
m=video 62084 RTP/SAVP 122 121 123
c=IN IP4 157.56.65.134
a=rtcp
a=rtcp-rsize
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc-range:1501-1600
a=x-source-streamid:2001792
a=x-sourceid:MainCamera
a=rtpmap:62085
a=label:main
a=cryptoscale:1 server AES_CM_128_HMAC_SHA1_80
inline:UFgmYYPs/EqZeo3s1A29oUvd3VsWL+pQQdeFXRgJ|2^31|1:1
a=sendonly
a=rtpmap:122 x-h264uc/90000
a=fmttype:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:121 x-rtvc1/90000
a=fmttype:121 CIF=15;PANO=15;VGA=15
a=x-caps:121
263:640:480:30.0:600000:1;4359:640:360:30.0:600000:1;8455:352:288:15.0:250000:1;12551:424:240:15.0:250000:1;16647:176:144:15.0:180000:1
a=rtpmap:123 x-ulpfecuc/90000
5 Security

5.1 Security Considerations for Implementers

Although media encryption is supported, the exchange of encryption information to encrypt the media is not encrypted. To protect the encryption information during the exchange, the application can use TLS to carry the SIP traffic. Any other security considerations are covered by SIP and SDP.

5.2 Index of Security Parameters

None.
Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.

- Microsoft Office Communications Server 2007
- Microsoft Office Communications Server 2007 R2
- Microsoft Lync Server 2010
- Microsoft Lync Server 2013
- Microsoft Office Communicator 2007
- Microsoft Office Communicator 2007 R2
- Microsoft Lync 2010
- Microsoft Lync Client 2013/Skype for Business
- Microsoft Skype for Business 2016
- Microsoft Skype for Business Server 2015
- Microsoft Skype for Business 2019
- Microsoft Skype for Business Server 2019

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.

<1> Section 3.1.5.3: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, these parameters are required.


<4> Section 3.1.5.3: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The SILK audio codec is not supported.

<5> Section 3.1.5.3: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The ULPFEC-UC video payload format is not supported.

<6> Section 3.1.5.3: Office Communications Server 2007, Office Communications Server 2007 R2, Lync Server 2010: For RTVideo, the RTP payload type value is 121.
<7> Section 3.1.5.4: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: The ordering of the media formats in a received offer is ignored.

<8> Section 3.1.5.5: Lync Server 2013: The RTP payload type 101 is not required.

<9> Section 3.1.5.7: Office Communications Server 2007, Office Communicator 2007: Comfort noise is not supported. For all other products, the name of the payload used for comfort noise is required to be "CN".

<10> Section 3.1.5.7: Office Communications Server 2007, Office Communicator 2007: Comfort noise is not supported. For all other products, the sampling rate is required to be 8,000 or 16,000.

<11> Section 3.1.5.9: Office Communications Server 2007, Office Communicator 2007: Application sharing is not supported. For all other product, application sharing is required to use ICE over TCP.

<12> Section 3.1.5.9: Office Communications Server 2007, Office Communications Server 2007 R2, Lync Server 2010: Due to an error in these products, a connection-oriented transport specified in the m= line of the first SDP offer is not rejected. However, these products do not support a connection-oriented transport for the initial active media address for audio or video.

<13> Section 3.1.5.10.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This requirement is not enforced. For all other products, when used in the context of this protocol, the a=connection attribute is required to have the value "existing".

<14> Section 3.1.5.12.1: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This behavior is not supported. For all other products, when the offer is forked, SDP answers not in reliable provisional responses are required to be sent only from a zero or one device.

<15> Section 3.1.5.12.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<16> Section 3.1.5.12.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<17> Section 3.1.5.12.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<18> Section 3.1.5.12.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<19> Section 3.1.5.12.3: Office Communications Server 2007, Office Communicator 2007: Early media is not supported.

<20> Section 3.1.5.12.3: Office Communicator 2007 R2, Lync 2010, Lync Client 2013/Skype for Business: The SDP answer in the final 200 response might contain some differences from the SDP answer in the provisional 18x-level response.

<21> Section 3.1.5.12.3: Office Communications Server 2007, Office Communicator 2007: Early media is not supported.

<22> Section 3.1.5.12.3: Office Communicator 2007 R2, Lync 2010, Lync Client 2013/Skype for Business: The SDP answer in the final 200 response might contain some differences from the SDP answer in the provisional 18x-level response.

<23> Section 3.1.5.12.4: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This behavior is not supported. For all other products, when a SIP INVITE request is NOT forked and an SDP answer is received in the
provisional response, ICE processing is required to proceed as if the SDP was received in the final response.

<24> Section 3.1.5.13: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. All other products are required to follow the exceptions as specified.

<25> Section 3.1.5.13: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. All other products are required to follow the exceptions as specified.

<26> Section 3.1.5.13: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<27> Section 3.1.5.15: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010: The VbSS modality is not supported.

<28> Section 3.1.5.16: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010: The IP address type in a c= line is IPv4.

<29> Section 3.1.5.18.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<30> Section 3.1.5.18.4: Office Communications Server 2007, Office Communicator 2007, Lync Server 2010, Lync 2010: This behavior is not supported. For all other products, the a=mid attribute is required.

<31> Section 3.1.5.18.5: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010 Lync Server 2013: This behavior is not supported.

<32> Section 3.1.5.19: Lync Server 2010: The sess-version parameter of the o= line is incremented in subsequent SDP offers and SDP answers.

<33> Section 3.1.5.19: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The addrtype parameter is "IP4".

<34> Section 3.1.5.20: Lync Server 2013: This version of ICE is not supported.

<35> Section 3.1.5.21: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2: This version of ICE is not supported.

<36> Section 3.1.5.21.1: Office Communicator 2007 R2, Lync 2010: An a=candidate attribute containing an IPv6 connection-address field causes an SDP parsing error.

<37> Section 3.1.5.21.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. All other product are required to gather the Relayed, Server Reflexive Candidates and perform connectivity checks.

<38> Section 3.1.5.21.3: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. All other products are not allowed to generate an SDP with the ice-options attribute.

<39> Section 3.1.5.21.4: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. All other products are not allowed to generate an SDP with the ice-mismatch attribute.

<40> Section 3.1.5.21.4: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, the default destination for a media component is required to have a corresponding candidate attribute.
Section 3.1.5.21.5: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

Section 3.1.5.22.1: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, for audio/video calls, the default candidate is not allowed to be TCP.

Section 3.1.5.22.1: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, for application sharing calls, the default candidate is required to be TCP.

Section 3.1.5.22.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, for application sharing media type, the local candidates are required to be TCP.

Section 3.1.5.23.1: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, the client is required to change the direction of all streams to inactive.

Section 3.1.5.23.1: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

Section 3.1.5.23.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported. For all other products, for application sharing calls, the client is required to change the direction of all streams to sendrecv.

Section 3.1.5.23.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

Section 3.1.5.24: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: The x-caps attribute is not supported, and is ignored.

Section 3.1.5.24: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2 This behavior is not supported. For all other products, the protocol peer is required to follow the requirements listed.

Section 3.1.5.25: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2 This behavior is not supported.

Section 3.1.5.26: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2 This behavior is not supported.

Section 3.1.5.28.1: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The x-mediabw attribute is not supported. It is ignored if present in a received SDP message.

Section 3.1.5.28.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The x-mediabw attribute is not supported. It is ignored if present in a received SDP message.

Section 3.1.5.28.2: Lync Server 2013, Lync Client 2013/Skype for Business: An x-mediabw attribute specifying a "main-audio" label is ignored.

Section 3.1.5.29.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The x-devicecaps attribute is not supported. It is ignored if present in a received SDP message.

Section 3.1.5.30.3: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The
rtcp-rsize and rtcp-fb attributes are not supported. They are ignored if present in a received SDP message.

<58> Section 3.1.5.31.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The a=x-ssrc-range attribute is not supported. It is ignored if present in a received SDP message.

<59> Section 3.1.5.32.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The a=x-source-streamid attribute is not supported. It is ignored if present in a received SDP message.

<60> Section 3.1.5.33.2: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2, Lync Server 2010, Lync 2010: The a=x-source attribute is not supported. It is ignored if present in a received SDP message.


<62> Section 3.1.5.34.2: Office Communicator 2007: This behavior is not supported.

<63> Section 3.1.5.35: Office Communicator 2007, Office Communications Server 2007, Office Communicator 2007 R2, Office Communications Server 2007 R2, Lync 2010, Lync Server 2010: A "main-video" modality with more than one channel is not supported.

<64> Section 3.1.5.36: Office Communicator 2007, Office Communications Server 2007, Office Communicator 2007 R2, Office Communications Server 2007 R2, Lync 2010, Lync Server 2010: The a=x-candidate-info attributes are not included in SDP media descriptions.

<65> Section 3.1.5.36.2: Office Communicator 2007, Office Communications Server 2007, Office Communicator 2007 R2, Office Communications Server 2007 R2, Lync 2010, Lync Server 2010: The a=x-candidate-info attributes are not included in SDP media descriptions.

<66> Section 3.1.5.38: Office Communicator 2007, Office Communications Server 2007, Office Communicator 2007 R2, Office Communications Server 2007 R2, Lync 2010, Lync Server 2010, Lync Server 2013: This feature is not supported. The a=rtcp-mux attribute is not supported.
7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.
8 Index

A

Abstract data model 19
Applicability 16

C

Capability negotiation 16
Change tracking 80
Client makes an offer using ICE V19 example 54
Client makes an offer using ICE-06 example 52
Client receives response to ICE V19 offer example 56
Client receives response to ICE-06 offer example 53

D

Data model - abstract 19

E

Examples
application sharing
offer/answer exchanges
answer 62
noteworthy points 62
offer 61
client makes an offer using ICE V19 54
client makes an offer using ICE-06 52
client receives response to ICE V19 offer 56
client receives response to ICE-06 offer 53
multi-channel main video modality 67
answer 71
offer 67
music-on-hold 67
offer removing 67
offer specifying 67
name and sampling rate restrictions 61
optimized media path to gateway
offer/answer exchange 63
incoming call 63
outbound call 65
SRTP encryption 57
offer/answer exchanges 58

F

Fields - vendor-extensible 16

G

Glossary 8

H

Higher-layer triggered events 19

I

ICE V19 example
client makes an offer 54
client receives response with SSRT 56
message processing deviations 34

ICE-06 example
client makes an offer 52
client receives response with SSRT 53
message processing deviations 33
Implementer - security considerations 74
Index of security parameters 74
Informative references 13
Initialization 19
Introduction 8

L

Local events 51

M

Message processing 19
a=connection attribute 27
a=crypto attribute 19
a=rtcp attribute 31
a=setup attribute 27
a=x-caps attribute 36
applicationsharing media type 31
call hold and retrieve 36
connection-oriented media address support 26
deviations from ICE V19 34
deviations from ICE-06 33
deviations from ICE-TCP-07 36
diagnostic info in SDP 39
dual-tone multi-frequency(DTMF) in SDP 25
eyearly media support 28
format preference 25
music-on-hold 40
negotiating SRTP optionally 25
new payload types 22
o= line in SDP 33
optimize media path to gateway 38
reliable provisional response processing 29
renegotiation of SRTP or SSRT encryption 30
restriction on name and sampling rate 25
restriction on name of RTP payload 25
specifying and negotiating SSRT 20
text telephony support 28
Messages
syntax 18
transport 18

Multi-channel main video modality
answer example 71
example 67
offer example 67
Music-on-hold
example 67
offer removing 67
offer specifying 67
message processing 40

N

Name and sampling rate restrictions
example 61
message processing 25
Normative references 11

O

Offer/answer exchange with optimized media path to
gateway
example 63
incoming call 63
outbound call 65
Offer/answer exchanges for application sharing
examples
answer 62
noteworthy points 62
offer 61
Offer/answer exchanges for SRTP encryption
examples 58
Optimize media path to gateway
example 63
incoming call 63
outbound call 65
message processing 38
Overview (synopsis) 13

P

Parameters - security index 74
Preconditions 16
Prerequisites 16
Product behavior 75

R

References 11
informative 13
normative 11
Relationship to other protocols 15

S

Security
implementer considerations 74
parameter index 74
Sequencing rules 19
a=connection attribute 27
a=crypto attribute 19
a=rtcp attribute 31
a=setup attribute 27
a=x-caps attribute 36
applicationsharing media type 31
call hold and retrieve 36
connection-oriented media address support 26
deviations from ICE V19 34
deviations from ICE-06 33
deviations from ICE-TCP-07 36
diagnostic info in SDP 39
dual-tone multi-frequency(DTMF) in SDP 25
early media support 28

format preference 25
music-on-hold 40
negotiating SRTP optionally 25
new payload types 22
o= line in SDP 33
optimize media path to gateway 38
reliable provisional response processing 29
renegotiation of SRTP or SSRTP encryption 30
restriction on name and sampling rate 25
restriction on name of RTP payload 25
specifying and negotiating SSRTP 20
text telephony support 28
SRTP encryption
example 57
SRTP encryption offer/answer exchanges
examples 58
SSRTP
message processing 20
Standards assignments 17

T

Timer events 51
Timers 19
Tracking changes 80
Transport 18
Triggered events 19

V

Vendor-extensible fields 16
Versioning 16